Answer:
The consecutive charge configuration has a more intense field than alternating
Explanation:
In each corner we place a different account there are only two different settings, see attached.
In the case of alternating charging (+ - + -) see diagram 1, the electric field in the center is canceled in pairs, resulting in a zero field
In the case of consecutive loads (+ + - -) in this case we have a result between the two charges, therefore the total field is
E = 2 k q / ra2 a cos 45
The consecutive charge configuration has a more intense field than alternating
Answer:
x = 0.396 m
Explanation:
The best way to solve this problem is to divide it into two parts: one for the clash of the putty with the block and another when the system (putty + block) compresses it is spring
Data the putty has a mass m1 and velocity vo1, the block has a mass m2
. t's start using the moment to find the system speed.
Let's form a system consisting of putty and block; For this system the forces during the crash are internal and the moment is preserved. Let's write the moment before the crash
p₀ = m1 v₀₁
Moment after shock
= (m1 + m2) 
p₀ =
m1 v₀₁ = (m1 + m2) 
= v₀₁ m1 / (m1 + m2)
= 4.4 600 / (600 + 500)
= 2.4 m / s
With this speed the putty + block system compresses the spring, let's use energy conservation for this second part, write the mechanical energy before and after compressing the spring
Before compressing the spring
Em₀ = K = ½ (m1 + m2)
²
After compressing the spring
= Ke = ½ k x²
As there is no rubbing the energy is conserved
Em₀ = 
½ (m1 + m2)
² = = ½ k x²
x =
√ (k / (m1 + m2))
x = 2.4 √ (11/3000)
x = 0.396 m
A. It is a compound made of oxygen and carbon
A machine can never be 100% efficient because some work is always lost
due to the lack of materials or equipment that would convert work by 100%. It follows
the second law of entropy. The ideal engine is known as Carnot’s engine having
a 100% efficiency. So far, no engine has ever gotten to 100%.
Explanation :
Distance is total path travelled by an object during its entire journey. It is a scalar quantity i.e only magnitude.
Displacement is the shortest distance covered by an object. It is basically the change in position of object. It is a vector quantity i.e direction as well as magnitude.
When an object is travelling in a straight line and stops at the end point, then both distance and displacement are same.
When an object is travelling in a straight line and then changes its direction or we can say come backwards then the magnitude of distance and displacement are different.