C. Reduced cost of watering i guess
Explanation:
1)  + 7 H_2(g)](https://tex.z-dn.net/?f=%202%20Al%28s%29%20%2B%202%20NaOH%28aq%29%20%2B%206%20H_2O%28l%29%20%5Clongleftrightarrow%202%20Na%5BAl%28OH%29_4%5D%28aq%29%20%2B%207%20H_2%28g%29)
![Kc=\frac{[Na[Al(OH)_4]]^2*[H_2]^7}{[NaOH]^2}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BNa%5BAl%28OH%29_4%5D%5D%5E2%2A%5BH_2%5D%5E7%7D%7B%5BNaOH%5D%5E2%7D)
The Kc for the reverse reaction is the inverse of the Kc of the reaction:

2) 
![Kc=\frac{[H_2SO_4]}{[SO_3]^2}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BH_2SO_4%5D%7D%7B%5BSO_3%5D%5E2%7D)
The Kc for the reverse reaction is the inverse of the Kc of the reaction:

3)
![Kc=\frac{1}{[O_2]^3}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B1%7D%7B%5BO_2%5D%5E3%7D)
The Kc for the reverse reaction is the inverse of the Kc of the reaction:

Answer:
487.33 K.
Explanation:
- To calculate the no. of moles of a gas, we can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant.
T is the temperature of the gas in K.
- If n is constant, and have two different values of (P, V and T):
<em>P₁V₁T₂ = P₂V₂T₁</em>
<em></em>
P₁ = 5.4 atm, V₁ = 1.0 L, T₁ = 33°C + 273 = 306 K.
P₂ = 4.3 atm, V₂ = 2.0 L, T₂ =??? K.
<em>∴ T₂ = P₂V₂T₁/P₁V₁</em> = (4.3 atm)(2.0 L)(306 K)/(5.4 atm)(1.0 L) = <em>487.33 K.</em>
Answer:
1st paragraph:
1.compound 2.physical 3.elements 4.water 5. gas 6.white 7. season 8.ratio 9.formula 10.elements 11.atoms 12.subscript 13.one
2nd paragraph
1.stable 2.many/reactive 3.eight 4.helium 5.seven 6.outer 7.one 8.level 9. compounds 10.reactive 11. seven 12. Eight 13.lose 14.gain 15. Share 16.compounds 17. atoms
Explanation:
I just did the 1st page. Gimme a min and I'll do the second.
Here is the link to the answer: