1. 5 electrons.

- Therefore, the 3d subshells blanks will be like this:
- ↑ ↑ ↑ ↑ ↑
2. 6 electrons.

- The 3d subshells blanks will be:
- ↑↓ ↑ ↑ ↑ ↑
3. 7 electrons.

- The 3d subshells blanks will be:
- ↑↓ ↑↓ ↑ ↑ ↑
Hope you could understand.
If you have any query, feel free to ask.
Answer:
See explanation
Explanation:
Tyndall effect refers to the scattering of light in a solution. Tyndall effect occurs when the size of particles in the solution exceeds 1 nm in diameter. Such solutions are actually called false solutions.
In tincture of iodine, the size of particles in solution is less than 1 nm in diameter hence the solution does not exhibit Tyndall effect. Hence, tincture of iodine is a true solution.
Therefore, if the size of particles in solution exceeded 1nm in diameter, Tyndall effect is observed.
Hey, lovely! It's a pretty lengthy process but here is a pretty clear video on how to do it. Hope this helps ya!
https://www.khanacademy.org/science/chemistry/chemical-reactions-stoichiome/balancing-chemical-equat...
Answer:
E° = 1.24 V
Explanation:
Let's consider the following galvanic cell: Fe(s) | Fe²⁺(aq) || Ag⁺(aq) | Ag(s)
According to this notation, Fe is in the anode (where oxidation occurs) and Ag is in the cathode (where reduction occurs). The corresponding half-reactions are:
Anode: Fe(s) ⇒ Fe²⁺(aq) + 2 e⁻
Cathode: Ag⁺(aq) + 1 e⁻ ⇒ Ag(s)
The standard cell potential (E°) is the difference between the standard reduction potential of the cathode and the standard reduction potential of the anode.
E° = E°red, cat - E°red, an
E° = 0.80 V - (-0.44 V) = 1.24 V
Answer:
Phosphorous has the smallest atomic size.
Explanation:
As we know these elements belong to same period means there valence shell is the same. So moving from left to right along the period the shell number remains constant but the number of protons and electrons increases. So, due to increase in number of protons the nuclear charge increases hence attracts the valence electrons more effectively resulting in the decrease of atomic size.
Elements and their atomic radius are as follow,
<span><span>Magnesium 0.160 nm
</span><span>
Aluminium 0.130 nm
</span><span>
Silicon 0.118 nm
</span><span>
Phosphorus <span>0.110 nm</span></span></span>