Answer:
0.0185 min⁻¹
Explanation:
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given:
20.0 % of the initial values is left which means that 0.20 of
is left. So,
= 0.20
t = 87.0 min
<u>k = 0.0185 min⁻¹</u>
Answer:
because they are actually moving, or because they reflect our motion through space.
Answer: Here's your answer: Therefore, the decimal number 0.0020 written in scientific notation is 2 × 10-3 and it has 2 significant figures. Here are some more examples of decimal to scientific notation 0.00200 in scientific notation
Explanation: Pls mark me brainiest pls
Answer:
t = 1862 s
Explanation:
To do this, we need first to determine the theorical detention time, which can be determined with the following expression:
t₀ = ∀/Q (1)
Where:
t₀: detention time
∀: Volume of the fluid in the reactor
Q: Flow rate in the reactor
With this time, we must use the following expression to determine the time that the workers will take to vent the tank:
C = C₀ e^(-t/t₀) (2)
From here, we must solve for time t, and the expression will be:
t = ln(C₀/C) * t₀ (3)
Now that we know the expression to use, let's solve for t. Using (1) to determine the detention time, ∀ is 1900 m³, and Q is 2.35 m³/s so:
t₀ = 1900 / 2.35 = 808.51 s
Now, let's solve for the time t. C will be 0.0015 mg/L (or 1.5 mg/m³ cause in 1 m³ we have 1000 L) and C₀ 15 mg/m³:
t = ln(15/1.5) * 808.51
<h2>
t = 1861.66 s or simply 1862 s</h2><h2>
</h2>
Hope this helps