1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ratling [72]
2 years ago
5

Plzzzzzzzz help me, im very confused​

Mathematics
1 answer:
Alex_Xolod [135]2 years ago
6 0

WHAT IS YOUR QUESTION

!!!!!!

You might be interested in
The Formula for the Area of a Triangle<br> is: =1/2ℎ. <br> Solve for .
rosijanka [135]

Answer:

But there is no question. And the formula for the area of a triangle is 1/2bh not 1/2h.

Thank you.

6 0
2 years ago
HELP ASAP (Geometry)
Andrei [34K]

1) Parallel line: y=-2x-3

2) Rectangle

3) Perpendicular line: y = 0.5x + 2.5

4) x-coordinate: 2.7

5) Distance: d=\sqrt{(4-3)^2+(7-1)^2}

6) 3/8

7) Perimeter: 12.4 units

8) Area: 8 square units

9) Two slopes of triangle ABC are opposite reciprocals

10) Perpendicular line: y-5=-4(x-(-1))

Step-by-step explanation:

1)

The equation of a line is in the form

y=mx+q

where m is the slope and q is the y-intercept.

Two lines are parallel to each other if they have same slope m.

The line given in this problem is

y=-2x+7

So its slope is m=-2. Therefore, the only line parallel to this one is the line which have the same slope, which is:

y=-2x-3

Since it also has m=-2

2)

We can verify that this is a rectangle by checking that the two diagonals are congruent. We have:

- First diagonal: d_1 = \sqrt{(-3-(-1))^2+(4-(-2))^2}=\sqrt{(-2)^2+(6)^2}=6.32

- Second diagonal: d_2 = \sqrt{(1-(-5))^2+(0-2)^2}=\sqrt{6^2+(-2)^2}=6.32

The diagonals are congruent, so this is a rectangle.

3)

Given points A (0,1) and B (-2,5), the slope of the line is:

m=\frac{5-1}{-2-0}=-2

The slope of a line perpendicular to AB is equal to the inverse reciprocal of the slope of AB, so:

m'=\frac{1}{2}

And using the slope-intercept for,

y-y_0 = m(x-x_0)

Using the point (x_0,y_0)=(7,1) we find:

y-1=\frac{1}{2}(x-7)

And re-arranging,

y-1 = \frac{1}{2}x-\frac{7}{2}\\y=\frac{1}{2}x-\frac{5}{2}\\y=0.5x-2.5

4)

The endpoints of the segment are X(1,2) and Y(6,7).

We have to divide the sgment into 1/3 and 2/3 parts from X to Y, so for the x-coordinate we get:

x' = x_0 + \frac{1}{3}(x_1 - x_0) = 1+\frac{1}{3}(6-1)=2.7

5)

The distance between two points A(x_A,y_A) and B(x_B,y_B) is given by

d=\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}

In this problem, the two points are

E(3,1)

F(4,7)

So the distance is given by

d=\sqrt{(4-3)^2+(7-1)^2}

6)

We have:

A(3,4)

B(11,3)

Point C divides the segment into two parts with 3:5 ratio.

The distance between the x-coordinates of A and B is 8 units: this means that the x-coordinate of C falls 3 units to the right of the x-coordinate of A and 5 units to the left of the x-coordinate of B, so overall, the x-coordinate of C falls at

\frac{3}{3+5}=\frac{3}{8}

of the  distance between A and B.

7)

To find the perimeter, we have to calculate the length of each side:

d_{EF}=\sqrt{(x_E-x_F)^2+(y_E-y_F)^2}=\sqrt{(-1-2)^2+(6-4)^2}=3.6

d_{FG}=\sqrt{(x_G-x_F)^2+(y_G-y_F)^2}=\sqrt{(-1-2)^2+(3-4)^2}=3.2

d_{GH}=\sqrt{(x_G-x_H)^2+(y_G-y_H)^2}=\sqrt{(-1-(-3))^2+(3-3)^2}=2

d_{EH}=\sqrt{(x_E-x_H)^2+(y_E-y_H)^2}=\sqrt{(-1-(-3))^2+(6-3)^2}=3.6

So the perimeter is

p = 3.6 + 3.2 + 2 + 3.6 = 12.4

8)

The area of a triangle is

A=\frac{1}{2}(base)(height)

For this triangle,

Base = XW

Height = YZ

We calculate the length of the base and of the height:

Base =XW=\sqrt{(x_X-x_W)^2+(y_X-y_W)^2}=\sqrt{(6-2)^2+(3-(-1))^2}=5.7

Height =YZ=\sqrt{(x_Y-x_Z)^2+(y_Y-y_Z)^2}=\sqrt{(7-5)^2+(0-2)^2}=2.8

So the area is

A=\frac{1}{2}(XW)(YZ)=\frac{1}{2}(5.7)(2.8)=8

9)

A triangle is a right triangle when there is one right angle. This means that two sides of the triangle are perpendicular to each other: however, two lines are perpendicular when their slopes are opposite reciprocals. Therefore, this means that the true statement is

"Two slopes of triangle ABC are opposite reciprocals"

10)

The initial line is

y=\frac{1}{4}x-6

A line perpendicular to this one must have a slope which is the opposite reciprocal, so

m'=-4

Using the slope-intercept form,

y-y_0 = m'(x-x_0)

And using the point

(x_0,y_0)=(-1,5)

we find:

y-5=-4(x-(-1))

Learn more about parallel and perpendicular lines:

brainly.com/question/3414323

brainly.com/question/3569195

#LearnwithBrainly

8 0
3 years ago
A pair of equations is shown below: y = 2x − 1 y = 4x − 5 Part A: In your own words, explain how you can solve the pair of equat
GalinKa [24]

Answer:

Solution given:

x=2

y=3

8 0
2 years ago
Juan has x apples and 8 oranges how many pieces of fruit does he have give your answer in terms of x
Marat540 [252]
The expression would be: x+8
The equation would be: x+8=
5 0
3 years ago
Not prime number in 12n- 5
Alona [7]

Answer:

55

Step-by-step explanation:

12 x 5 = 60

60-5 = 55

55 is not prime

5 0
2 years ago
Other questions:
  • What is an expression for the total cost of feeding h horses?
    12·1 answer
  • Please help ...........​
    5·1 answer
  • these marbles are placed in a bag and two of them are randomly drawn. yellow=2 pink=3 blue=5 what is the probability of drawing
    11·1 answer
  • (5x+2) and {3(x+14)} what is
    8·1 answer
  • There are 7 cards with a picture of a rose and 2 cards with a picture of a daisy. Alfa keeps all the cards face down on the tabl
    12·2 answers
  • Finding the median 0,2,3,4,4,6,7
    5·2 answers
  • Write an explicit rule that represents this sequence <br> 13,11,9,7,5 ...
    7·1 answer
  • Compute the value of 9x^2 + 4y^2 if xy = 6 and 3x + 2y = 12.​
    5·1 answer
  • I will brainliest and 10 points each
    5·1 answer
  • PLS HELP ME!!!!!!! I REALLY NEED THIS!!!!!!!
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!