I think the correct answer from the choices listed above is option A. The structural level of a protein least affected by a disruption in hydrogen bonding is the primary level. The other levels are very much affected by hydrogen bonding. Hope this answers the question.
Answer:
A
Explanation:
Iron has the ground state electronic configuration [Ar]3d64s2
Fe2+ has the electronic configuration [Ar]3d6.
In an octahedral crystal field, there are two sets of degenerate orbitals; the lower lying three t2g orbitals, and the higher level two degenerate eg orbitals. Strong field ligands cause high octahedral crystal field splitting, there by separating the two sets of degenerate orbitals by a tremendous amount of energy. This energy is much greater than the pairing energy required to pair the six electrons in three degenerate orbitals. Since CN- is a strong field ligand, it leads to pairing of six electrons in three degenerate orbitals
First find the mass of <span>solute:
Molar mass KNO</span>₃ = <span>101.1032 g/mol
mass = Molarity * molar mass * volume
mass = 0.800 * 101.1032 * 2.5
mass = 202.2064 g of KNO</span>₃
<span>To prepare 2.5 L (0800 M) of KNO3 solution, must weigh 202.2064 g of salt, dissolve in a Beker, transfer with the help of a funnel of transfer to a volumetric flask, complete with water up to the mark, capping the balloon and finally shake the solution to mix.</span>
hope this helps!