1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeu [11.5K]
3 years ago
14

Brainliest to first correct answer, no bots, no links

Physics
2 answers:
aev [14]3 years ago
7 0

Answer:

It is A.

Explanation:

nasty-shy [4]3 years ago
6 0

Answer:

the answer is A

Explanation:

the answer is a because the sound wave is softer then the other one.

You might be interested in
What is superstring theory?
Stels [109]
Superstring theory is an attempt to explain all of the particles and fundamental forces of nature in one theory by modeling them as vibrations of tiny supersymmetric strings.
4 0
3 years ago
A particle with a mass of 6.64 × 10–27 kg and a charge of +3.20 × 10–19 C is accelerated from rest through a potential differenc
blondinia [14]

Answer:

Explanation:

Given that,

Mass m = 6.64×10^-27kg

Charge q = 3.2×10^-19C

Potential difference V =2.45×10^6V

Magnetic field B =1.6T

The force in a magnetic field is given as Force = q•(V×B)

Since V and B are perpendicular i.e 90°

Force =q•V•BSin90

F=q•V•B

So we need to find the velocity

Then, K•E is equal to work done by charge I.e K•E=U

K•E =½mV²

K•E =½ ×6.64×10^-27 V²

K•E = 3.32×10^-27 V²

U = q•V

U = 3.2×10^-19 × 2.45×10^6

U =7.84×10^-13

Then, K•E = U

3.32×10^-27V² = 7.84×10^-13

V² = 7.84×10^-13 / 3.32×10^-27

V² = 2.36×10^14

V=√2.36×10^14

V = 1.537×10^7 m/s

So, applying this to force in magnetic field

F=q•V•B

F= 3.2×10^-19 × 1.537×10^7 ×1.6

F = 7.87×10^-12 N

6 0
3 years ago
Read 2 more answers
A ball is thrown vertically upwards with a velocity
zhuklara [117]

Answer:

Explanation:

The acceleration of gravity is 9.8m/s^2.

So to calculate the time it will take to make the ball stop(which btw means the ball now reach its greatest height), use the formula V1=V0+at. V1 is the final velocity(which is 0), V0 is the starting velocity(which is 30m/s), and the a(cceleration) is 9.8m/s^2.

(You can ignore the fact "at" is -30 instead 30, it's because the directions two velocity travel are opposite. )

We can now know the time it takes to make the ball stop just by the gravitational force is about 3 sec.

Use another formula S=1/2at^2, to find out the S(height) is 1/2*9.8*3^2=44.1, which is approximately D.45m .

6 0
3 years ago
An Apple falls from a tree and one-half second later hits the ground
docker41 [41]
There isnt enough information to answer the question, the missing variable is "distance from said falling spot and ground"
8 0
3 years ago
What type of climate would be near cold ocean currents? PLEASE HELP QUICK!!
olya-2409 [2.1K]

Answer:

hot humid with lots of rain.

Explanation:

ocean currents act as conveyer belts of warm and cold water sending heat to the polar regions and helping the tropical areas cool off, thus influencing both weather and climate. the tropics are particularly rainy because heat absorption , and thus ocean evaporation, is highest.

5 0
4 years ago
Other questions:
  • A motor vehicle has a mass of 1.8 tonnes and its wheelbase is 3 m. The centre of gravity of the vehicle is situated in the centr
    14·1 answer
  • if an observer is hearing a rise in pitch that means the frequency of the waves in their position are falling
    5·1 answer
  • A container has a mass of 1.293 metric tons. what is the mass of the container in grams
    13·2 answers
  • What are used to draw plane shapes
    14·1 answer
  • How to find capacitance of a conductor?
    7·1 answer
  • What does a motion diagram represent? ​
    10·1 answer
  • Which variable would be most useful in determining the number of people eligible for retirement benefits in a certain year?
    15·1 answer
  • Bohr found experimental evidence for his atomic model by studying what?
    13·1 answer
  • How come we can see orange? In simple words.
    14·1 answer
  • Hummingbirds may seem fragile, but their wings are capable of sustaining very large forces and accelerations. (Figure 1) shows d
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!