Answer: A reversible reaction is a reaction that takes place in back and front directions. If the reaction were to reach equilibrium, the rate of forward direction would be equal to that of the reverse reaction.
Explanation:
Reversible reactions :
These are the reaction in which reactants reacts to give product and products reacts to give reactants as a product in return.

- In above equation, 'A' and 'B' are reacting together to give 'C' and 'D', as products and vice-versa.
- When the above reaction reaches equilibrium the rate of forward and backward reaction becomes equal.
Thermal expansion<span> is the tendency of matter to change in shape, area, and volume in response to a change in temperature, through heat transfer. Temperature is a monotonic function of the average molecular kinetic energy of a substance. When a substance is heated, the kinetic energy of its molecules increases.</span>
I would say that it's C. Seasonal temperatures have dipped over time, but I could easily be wrong, since it's my opinion. A weather condition is defined as the atmospheric conditions that 'comprise the state of the atmosphere in terms of temperature and wind and clouds and precipitation. But I believe it could just as easily be B. 150mm of rainfall is a normal average in the city.
Answer:
70mol
Explanation:
The equation of the reaction is given as:
2C₂H₂ + 5O₂ → 4CO₂ + 2H₂O
Given parameters:
Number of moles of acetylene = 35.0mol
Number of moles of oxygen in the tank = 84.0mol
Unknown:
Number of moles of CO₂ produced = 35.0mol
Solution:
From the information given about the reaction, we know that the reactant that limits this combustion process is acetylene. Oxygen is given in excess and we don't know the number of moles of this gas that was used up. We know for sure that all the moles of acetylene provided was used to furnish the burning procedure.
To determine the number of moles of CO₂ produced, we use the stoichiometric relationship between the known acetylene and the CO₂ produced from the balanced chemical equation:
From the equation:
2 moles of acetylene produced 4 moles of CO₂
∴ 35.0 mol of acetylene would produced:
= 70mol