B
Explanation:
I rember when I learned this in 3rd grade
Answer:
Some are large, some are small, some have more gravity then others. Some cant handle human life. Some are very cold some are very hot.
Explanation:
Answer:
n a chemical reaction, delta H represents the sum of the heats of formation, commonly measured in kilojoules per mol (kJ/mol), of the products minus the sum of those of the reactants. The letter H in this form is equal to a thermodynamic quantity called enthalpy, representing the total heat content of a system.
Answer:
185.49 grams of Zinc would react with 454g (1lb) of copper sulfate
Explanation:
Yo know the following balanced reaction:
CuSO₄(aq)+ Zn(s) →Cu(s) + ZnSO₄(aq)
You can see that by stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of reagents and products are part of the reaction:
- CuSO₄: 1 mole
- Zn: 1 mole
- Cu: 1 mole
- ZnSO₄: 1 mole
Being:
- Cu: 63.54 g/mole
- S: 32 g/mole
- O: 16 g/mole
- Zn: 65.37 g/mole
the molar mass of the compounds participating in the reaction is:
- CuSO₄:63.54 g/mole + 32 g/mole + 4*16 g/mole= 159.54 g/mole ≅ 160 g/mole
- Zn: 65.37 g/mole
- Cu: 63.54 g/mole
- ZnSO₄: 65.37 g/mole + 32 g/mole + 4*16 g/mole= 161.37 g/mole
Then, by stoichiometry of the reaction, the following amounts of mass of reagent and product participate in the reaction:
- CuSO₄: 1 moles* 160 g/mole= 160 g
- Zn: 1 mole* 65.37 g/mole= 65.37 g
- Cu: 1 mole* 63.54 g/mole= 63.54 g
- ZnSO₄: 1 mole* 161.37 g/mole= 161.37 g
Now you can apply the following rule of three: if 160 grams of CuSO₄ react with 65.37 grams of Zn by this reaction stoichiometry, 454 grams of CuSO₄ with how much mass of Zn will it react?

mass of Zn= 185.49 grams
<u><em>185.49 grams of Zinc would react with 454g (1lb) of copper sulfate</em></u>
Answer:
Part A:
Charge is 
Configuration is 
Part B:
Charge is 
Configuration is 
Part C:
Charge is 
Configuration is 
Explanation:
Monatomic ions:
These ions consist of only one atom. If they have more than one atom then they are poly atomic ions.
Examples of Mono Atomic ions: 
Part A:
For P:
Phosphorous (P) has 15 electrons so it require 3 more electrons to stabilize itself.
Charge is 
Full ground-state electron configuration of the mono atomic ion:

Part B:
For Mg:
Magnesium (Mg) has 12 electrons so it requires 2 electrons to lose to achieve stable configuration.
Charge is 
Full ground-state electron configuration of the mono atomic ion:

Part C:
For Se:
Selenium (Se) has 34 electrons and requires two electrons to be stable.
Charge is 
Full ground-state electron configuration of the mono atomic ion:
