Answer:
B. and D. would be my best guess.
Explanation:
The reason why is because if you lower the resistance, the voltage will be higher, and if you higher the voltage, the resistance would be lower and the voltage would higher.
(a) The gas of interstellar medium can be detected from the radiations of photons of wavelength 21 cm.
(b) The gas of interstellar medium can be detected from the absorption lines present in the light from distant stars, which must be caused by a medium of density and temperature other than that of the stars emitting the lights.
<h3>
What is interstellar medium?</h3>
Interstellar medium is the matter and radiation that exist in the space between the star systems in a galaxy.
<h3>Evidence that interstellar medium contains both gas and dust</h3>
- The gas of interstellar medium can be detected from the radiations of photons of wavelength 21 cm.
- The gas of interstellar medium can be detected from the absorption lines present in the light from distant stars, which must be caused by a medium of density and temperature other than that of the stars emitting the lights.
Learn more about interstellar medium here: brainly.com/question/4173326
#SPJ11
Answer:

Explanation:
From the free-body diagram for the car, we have that the normal force has a vertical component and a horizontal component, and this component act as the centripetal force on the car:

Solving N from (2) and replacing in (1):

The centripetal acceleration is given by:

Replacing and solving for v:

Answer:
mass of the object is 2.18 kg
Explanation:
Given
Force (F) = 8.5 N = 8.5 kg.m/
acceleration (a) = 3.9 m/
Mass (m) = ?
We know that the newton's second law of motion gives the relation between mass of ab object. force acted upon and the amount the object is accelerated. It is expressed in the form of an equation:
F = ma
mass, m = F/a
= 
= 2.18 kg
Answer:
See Explanation
Explanation:
The relationship between angle of an incline and the acceleration of an object moving down the incline.
As the angle of an incline increases, so does the acceleration of the body moving down the incline increases, resolving the force acting on an inclined object
Parallel force = mgsin, perpendicular = mgcosΘ
With th weigh component 'mg' of the parallel force accounting for the acceleration of the body down the incline.
mgsinΘ = ma
Fnet = ma
B.) From Fnet = ma
Fnet = ma
a = Fnet / m
Where Fnet = Net force = mgsinΘ, a = acceleration