1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Verizon [17]
3 years ago
6

Firecrackers A and B are 600 m apart. You are standing exactly halfway between them. Your lab partner is 300 m on the other side

of firecracker A. You see two flashes of light, from the two explosions, at exactly the same instant of time.
Define event 1 to be "firecracker 1 explodes" and event 2 to be "firecracker 2 explodes." According to your lab partner, based on measurements he or she makes, does event 1 occur before, after, or at the same time as event 2? Explain.
Physics
1 answer:
pishuonlain [190]3 years ago
8 0

Answer:

See the explanation

Explanation:

Given:

Distance of Firecrackers A and B = 600 m

Event 1 = firecracker 1 explodes

Event 2 = firecracker 2 explodes

Distance of lab partner from cracker A = 300 m

You observe the explosions at the same time

to find:

does event 1 occur before, after, or at the same time as event 2?

Solution:

Since the lab partner is at 300 m distance from the firecracker A and Firecrackers A and B are 600 m apart

So the distance of fire cracker B from the lab partner is:

600 m  + 300 m = 900 m

It takes longer for the light from the more distant firecracker to reach so

Let T1 represents the time taken for light from firecracker A to reach lab partner

T1 = 300/c

It is 300 because lab partner is 300 m on other side of firecracker A

Let T2 represents the time taken for light from firecracker B to reach lab partner

T2 = 900/c

It is 900 because lab partner is 900 m on other side of firecracker B

T2 = T1

900 = 300

900 = 3(300)

T2 = 3(T1)

Hence lab partner observes the explosion of the firecracker A before the explosion of firecracker B.

Since event 1 = firecracker 1 explodes and event 2 = firecracker 2 explodes

So this concludes that lab partner sees event 1 occur first and lab partner is smart enough to correct for the travel time of light and conclude that the events occur at the same time.

You might be interested in
spaceship of mass m travels from the Earth to the Moon along a line that passes through the center of the Earth and the center o
satela [25.4K]

Answer:

the correct result is r = 3.71 10⁸ m

Explanation:

For this exercise we will use the law of universal gravitation

          F = - \frac{m_{1} m_{2} }{r^2}

We call the masses of the Earth M, the masses of the moon m and the masses of the rocket m ', let's set a reference system in the center of the Earth, the distance from the Earth to the moon is d = 3.84 108 m

rocket force -Earth

          F₁ = - \frac{m' M }{r^2}

rocket force - Moon

          F₂ = - \frac{m' m }{(d-r)^2}

in the problem ask for what point the force has the relation

          2 F₁ = F₂

let's substitute

          2 2 \frac{M}{r^2} = \frac{m}{(d-r)^2}

          (d-r) ² = \frac{m}{2M} r²

           d² - 2rd + r² = \frac{m}{2M} r²

           r² (1 -\frac{m}{2M}) - 2rd + d² = 0

Let's solve this quadratic equation to find the distance r, let's call

           a = 1 - \frac{m}{2M}

           a = 1 - \frac{7.36 10^{22} }{2 \  5398 10^{24}} = 1 - 6.15 10⁻³

           a = 0.99385

         

            a r² - 2d r + d² = 0

           r =  \frac  {2d \frac{+}{-}   \sqrt{4d^2 - 4 a d^2}} {2a}

           r = [2d ± 2d \sqrt{1-a}] / 2a

           r = \frac{d}{a}   (1 ± √ (1.65 10⁻³)) =  \frac{d}{a} (1 ± 0.04)

           r₁ = \frac{d}{a} 1.04

           r₂ = \frac{d}{a} 0.96

let's calculate

           r₁ = \frac{3.84 10^8}{0.99385} 1.04

           r₁ = 401.8 10⁸ m

          r₂ = \frac{3.84 10^8}{0.99385} 0.96

          r₂ = 3.71 10⁸ m

therefore the correct result is r = 3.71 10⁸ m

3 0
2 years ago
What is the most common gas in the atmosphere
evablogger [386]
The most common gas in the atmosphere is nitrogen, because it is found in all living things, and as you may know, there are billions of living things here on Earth.
Hope I helped! (Mark as Brainliest?)
:)
8 0
3 years ago
Read 2 more answers
Kevin draws a figure that has 4 sides all sides have the same length his figure has no right angels what figure does he draw
Svetllana [295]
Diamond/ rhombus/ parallelogram
4 0
3 years ago
What radiation lies at frequencies just below the frequencies of visible light?
vlabodo [156]
<span>Infrared radiation also called as infrared light was discovered by Sir William Herschel in 1800.It is an electronic magnetic radiation with longer wavelengths than those of a visible light.It involves waves rather than particles. It lies at frequencies just below the frequencies of visible light.</span>
3 0
3 years ago
(4A) The mass of Earth is 5.972 * 10^24 kg, and the radius of Earth is 6,371 km.
faltersainse [42]

Answer:

x₁ = 345100 km

Explanation:

The direction of the attraction forces between the earth and the object, and between the moon and the object, are in opposite direction and  (along the straight line between the centers of earth and moon) and as gravity is always attractive, the net force will become zero when both forces are equal. According to this:

Let  call "x₁"  distance between center of the earth and the object, and

"x₂" the distance between center of the moon and the object, Mt mass of the earth, Ml mass of the moon, m₀ mass of the object

we can express:

F₁  ( force between earth and the object )

F₁ = K *  Mt * m₀/ ( x₁)²        K is a gravitational constant

F₂  (force between mn and the object)

F₂ = K * Ml * m₀ / (x₂)²

Then:

F₁ = F₂               K*Mt*m₀ / x₁²   =  K*Ml*m₀ /x₂²

Or  simplifying the expression

Mt/ x₁²  =  Ml/ x₂²

We know that   x₁   +  x₂  = 384000 Km then

x₁ =  384000 - x₂

Mt/( 384000 - x₂)²  =  Ml / x₂²

Mt *  x₂²  =  Ml *( 384000 - x₂)²

We need to solve for x₂

Mt *  x₂²  =  Ml *[ ( 384000)² + x₂² - 768000*x₂]

By substitution:

5.972*10∧24*x₂² = 7.348*10∧22 * [ 1.47*10∧11 ] + 7.348*10∧22*x₂² -

                                7.348*10∧22*768000*x₂

Simplifying by 10∧22

5.972*10²*x₂²  = 7.348* [ 1.47*10∧11 ] + 7.348*x₂²- 7.348*768000*x₂

Sorting out

5.972*10²*x₂²- 7.348*x₂² = 10.80*10∧11 - 56,43* 10∧5*x₂

(597,2 - 7,348 )* x₂²  = 10.80*10∧11 - 56.43*10∧5*x₂

590x₂²  + 56.43*10∧5*x₂ - 10.80*10∧11 = 0

Is a second degree equation

x₂  =  -56.43*10∧5 ± √3184*10∧10 + 25488*10∧11  / 1160

x₂ ₁  = -56.43*10∧5 + √3184*10∧10 + 25488*10∧11  / 1160

x₂ ₁  =  -56.43*10∧5 + √3184*10∧10 + 254880*10∧10  / 1160

x₂ ₁  = -56.43*10∧5 + 10∧5 [ √3184 + 254880 ] /1160

x₂ ₁  =  -56.43*10∧5 + 508* 10∧5  / 1160

x₂ ₁  =  451.27*10∧5/1160

x₂ ₁  =  4512.7*10∧4 /1160

x₂ ₁  = 3.89*10∧4  km (distance between the moon  and the object)

x₂ ₁  = 38900 km

x₂ = 38900 km

We dismiss the other solution because is negative and there is not a negative distance

Then the distance between the earth and the object is:

x₁  = 384000 - x₂

x₁ = 384000 - 38900

x₁ = 345100 km

5 0
3 years ago
Other questions:
  • Your boss asks you to design a room that can be as soundproof as possible and provides you with three samples of material. The o
    9·1 answer
  • You have a resistor of resistance 200 ? and a 6.00-?F capacitor. Suppose you take the resistor and capacitor and make a series c
    11·1 answer
  • A cyclist maintains a constant velocity of 4.1 m/s headed away from point A. At some initial time, the cyclist is 244 m from poi
    8·1 answer
  • A 0.150 kg baseball has 118 j of KE. how fast is the ball moving?(unit=m/s)
    7·1 answer
  • The copernican model of the universe was supported by
    8·1 answer
  • A circuit consists of a 9.0 v battery connected to three resistors (52 , 17 , and 140 ) in series. (a) find the current that flo
    9·1 answer
  • Two identical air-filled parallel-plate capacitors C1 and C2 are connected in series to a battery that has voltage V. The charge
    13·1 answer
  • Cho q1= 8.10 mũ -8C ; q2 = -8.10 mũ -8C . Đặt tại 2 điểm A và B cách nhau 6cm trong không khí . Xác định lực điện dung dịch lên
    11·1 answer
  • Plzz answer this question correctly
    7·1 answer
  • Calculate the average speed of a runner who runs for 500 meters in 40 second HELP!
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!