Answer:
You Need to put in the picture
Explanation:
I cant see it
The reactions produces an enormous amount of energy per unit mass compared to nuclear fission. Hope this helped
Answer:
to the left
Explanation:
<u>If the concentration of products is increased for a reaction that is in equilibrium, the equilibrium would shift to the left side of the reaction (the reactant's side). </u>
For a reaction that is in equilibrium, the reaction is balanced between the reactants and the products. According to Le Cha telier's principle, if one of the constraints capable of influencing the rate of reactions is applied to such a reaction that is in equilibrium, the equilibrium would shift so as to neutralize the effects created by the constraint.
<em>Hence, in this case, if the concentration of the products of a reaction in equilibrium is increased, the equilibrium would shift in such a way that more reactants are formed so as to annul the effects created by the increase in the concentration of the products. Since reactants are always on the left side of chemical equations, it thus means that the equilibrium would shift to the left.</em>
Answer:
Explanation:
If we look at the structure of 1-Bromopropane; we will see that it is a derivative of alkane family by the the substitution of an alkyl group. The position of the Bromine in the propane is 1, making 1-Bromopropane a primary alkyl-halide.
Primary alkyl - halide undergo SN2 mechanism. This nucleophilic reaction needs to be a strong alkyl halide , such as 1-Bromopropane used otherwise it will result to a reactive mechanism if a weak electrophile is used.
However, the critical and the main objective here is to Draw the major substitution product if the reaction proceeds in good yield. If no reaction is expected or yields will be poor, draw the starting material in the box. If a charged product is formed, be sure to draw the counterion.
The attached diagrams portraying this notions is shown in the attached file below.
The volume of the 0.15 M LiOH solution required to react with 50 mL of 0.4 M HCOOH to the equivalence point is 133.3 mL
<h3>Balanced equation </h3>
HCOOH + LiOH —> HCOOLi + H₂O
From the balanced equation above,
The mole ratio of the acid, HCOOH (nA) = 1
The mole ratio of the base, LiOH (nB) = 1
<h3>How to determine the volume of LiOH </h3>
- Molarity of acid, HCOOH (Ma) = 0.4 M
- Volume of acid, HCOOH (Va) = 50 mL
- Molarity of base, LiOH (Mb) = 0.15 M
- Volume of base, LiOH (Vb) =?
MaVa / MbVb = nA / nB
(0.4 × 50) / (0.15 × Vb) = 1
20 / (0.15 × Vb) = 1
Cross multiply
0.15 × Vb = 20
Divide both side by 0.15
Vb = 20 / 0.15
Vb = 133.3 mL
Thus, the volume of the LiOH solution needed is 133.3 mL
Learn more about titration:
brainly.com/question/14356286