Answer: The 234.74 grams of sample should be ordered.
Explanation:
Let the gram of 114 Ag to ordered be 
The amount required for the beginning of experiment = 0.0575 g
Time requires to ship the sample = 4.2hour = 252 min(1 hr = 60 min)
Half life of the sample =
= 21 min

![\log[N]=\log[N_o]-\frac{\lambda t}{2.303}](https://tex.z-dn.net/?f=%5Clog%5BN%5D%3D%5Clog%5BN_o%5D-%5Cfrac%7B%5Clambda%20t%7D%7B2.303%7D)
![\log[0.0575 g]=\log[N_o]-\frac{0.033 min^{-1}\times 252 min}{2.303}](https://tex.z-dn.net/?f=%5Clog%5B0.0575%20g%5D%3D%5Clog%5BN_o%5D-%5Cfrac%7B0.033%20min%5E%7B-1%7D%5Ctimes%20252%20min%7D%7B2.303%7D)

The 234.74 grams of sample should be ordered.
The ansewer is Boyle’s law
Add the change in temperature to your substance's original temperature to find its final heat. For example, if your water was initially at 24 degrees Celsius, its final temperature would be: 24 + 6, or 30 degrees Celsius.
There are 11 Carbon atoms in the compound.
<u>Solution:</u>
Carbon atom count is the ratio of the M peak to the M+1 peak.

Here M peak is 57.10% and M+1 peak is 6.83%. On applying the values in the formula we get,

Therefore, the number of Carbon atoms in the compound are 11.
Refer the image attached below for a better understanding of M peak and M+1 peak.
The heaviest ion that has the greatest m/z value is said to be the molecular ion peak in mass spectrum.
Answer:
3.6 times 10^4
Explanation:
Scientific notation is between 1-9. So, we move 36000 to 4 decimal places. SO it would be 3.6 times 10^4. Scientific Notation always has the base of 10 . Enjoy :)