Answer:
When 1.20 mole of ammonia reacts, 1.8 moles of water are produced.
Explanation:
The balanced reaction is:
4 NH₃(g) + 5 O₂(g) → 4 NO (g) + 6 H₂O
By stoichiometry of the reaction, the following amounts of moles participate in the reaction:
- NH₃: 4 moles
- O₂: 5 moles
- NO: 4 moles
- H₂O: 6 moles
Then you can apply the following rule of three: if by stoichiometry 4 moles of ammonia produce 6 moles of water, 1.2 moles of ammonia will produce how many moles of water?

moles of water= 1.8 moles
<u><em>When 1.20 mole of ammonia reacts, 1.8 moles of water are produced.</em></u>
<u><em></em></u>
I think C. Ionic compounds are very difficult to break apart because they are fully negative or positive charges, like magnets.
The thermal energy needed to completely melt 9.60 mole of ice at 0.0 C is 57.8 Kj
Explanation
ice melt to form water
The molar heat of fusion for water is 6.02 Kj/mol
Thermal energy = moles x molar heat of fussion for water
=9.6 mol x6.02 kj/mol =57.8 Kj
Answer: Biological Magnification
Explanation:
Organisms acquire toxic substance from the environment along with nutrients and water. Some of the toxins are metabolized and excreted, but others accumulate in specific tissues, especially fat. One of the reasons accumulated toxins are particularly harmful is that the become more concentrated in successive trophic level of the food web, this is the process of biological magnification.
Magnification occurs because the biomass at any given level is produced from a must larger biomass ingested from the level below. Thus the top-level carnivores tend to be the organism most severely affected by toxic compounds in the environment.
Examples of toxins that demonstrate biology magnification are chlorinated hydrocarbons, and many pesticides.