Answer:
<h2> 27m/s</h2>
Explanation:
Given data
initital velocity u=15m/s
deceleration a=3m/s^2
time t= 4 seconds
final velocity v= ?
Applying the expression
v=u+at------1
substituting our data into the expression we have
v=15+3*4
v=15+12
v=27m/s
The velocity after 4 seconds is 27m/s
answer = true
reasoning
kinetic energy is the energy of movement
potential energy is built up kinetic energy
hope this helps!
Answer:
Subducting convergent boundary
Explanation:
Generally, volcanoes occurs in both divergent and convergent boundaries. But the convergent boundary it occurs is usually associated with subduction.
Divergent boundary, plates move away from each other creating a new crust in the process. The diverging plates creates the space for magma to be squeezed through cracks and fissures. The magma's erupt to form volcanoes. In the Atlantic ocean the spreading of the plates causes an upwelling of magma through the crest of the Atlantic ridges. New oceanic crust are formed through this process. Sometimes the magma eruption forms volcanoes that are higher than the sea level.
Convergent boundary , plates collides with each other . But in the case of volcanoes existence , the collision should be between a denser plate(oceanic plates) and a less dense plates(continental plates) so that subduction can take place. The subducted plates (oceanic plates) creates trenches and get expose to high temperature and pressure as it sinks toward the mantle. The upper mantle rocks melts and migrate to the earth surface forming volcanoes . Over 75% of the volcanoes occur along the pacific basin where convergent boundary is dominant. Pacific ring of fire has one of the most number of volcanoes.
Answer:
d = 120 [m]
Explanation:
In order to solve this problem, we must use the theorem of work and energy conservation. Where the energy in the final state (when the skater stops) is equal to the sum of the mechanical energy in the initial state plus the work done on the skater in the initial state.
The mechanical energy is equal to the sum of the potential energy plus the kinetic energy. As the track is horizontal there is no unevenness, in this way, there is no potential energy.
E₁ + W₁₋₂ = E₂
where:
E₁ = mechanical energy in the initial state [J] (units of Joules)
W₁₋₂ = work done between the states 1 and 2 [J]
E₂ = mechanical energy in the final state = 0
E₁ = Ek = kinetic energy [J]
E₁ = 0.5*m*v²
where:
m = mass = 60 [kg]
v = initial velocity = 12 [m/s]
Now, the work done is given by the product of the friction force by the distance. In this case, the work is negative because the friction force is acting in opposite direction to the movement of the skater.
W₁₋₂ = -f*d
where:
f = friction force = 36 [N]
d = distance [m]
Now we have:
0.5*m*v² - (f*d) = 0
0.5*60*(12)² - (36*d) = 0
4320 = 36*d
d = 120 [m]