This distance is known as the amplitude of the wave, and is the characteristic height of the wave, above or below the equilibrium position. Normally the symbol A is used to represent the amplitude of a wave. The SI unit of amplitude is the metre (m).
Answer:
I understand how u feel if u need someone to talk to I will be here for u my stepmom is like that i will be here for u if u wana talk
Explanation:
The relative motion of gaseous particles increases with increase in the temperature of the gas molecules just like the motion of popcorn in a popper increases when heat is applied to the popper.
<h3>What is kinetic theory of gas?</h3>
The kinetic theory of gases or matter states that matter consists of tiny particles which are constant motion, colliding with one another and with walls of the containing vessels.
Just like a popcorn in a popcorn popper pops when heat is applied to the popper, gases contained in a cylinder increases their speed when they acquire more kinetic energy as the temperature of the cylinder increases.
Thus, the motion of gas particles depends on the temperature of the containing vessel so also does the random motion of popcorn depends on the temperature of the popper.
Learn more about kinetic theory of gases here: brainly.com/question/11067389
#SPJ1
Answer:
520 miles per hour
Explanation:
Let the speed of the Boeing 747 be x miles per hour.
The small airplane covers distance of 780 miles with speed 260 miles per hour.
Also,
After 1.5 hours the Boeing 747 leave the same place and reaches at same time. Both covered distance of 780 miles.
So,
<u>Time taken by Boeing 747 + 1.5 hours = Time taken by small plane.</u>
Also,
Time = Distance/ speed
So,
780 / x + 1.5 = 780/ 260
Solving for x, we get:
<u>x = 520 miles per hour</u>
Answer:
a) v2=4147.72 m/s
b) stotal=5.53x10^6 m
Explanation:
a) the length from the center of the earth is equal to:
L1=1x10^6+((6.37/2)x10^6)=4.18x10^6 m
the velocity is 5.14 km/s=5.14x10^3 m/s
the farthest distance is equal to:
L2=2x10^6+((6.37/2)x10^6)=5.18x10^6 m
As the angular momentum is conserved, we have to:
I1=I2
m*L1*v1=m*L2*V2, where m is the mass of satelite
clearing v2:
v2=(L1*V1)/L2=(4.18x10^6*5.14x10^3)/5.18x10^6=4147.72 m/s
b) Using the Newton 3rd law:
vf^2=vi^2+2as
where:
a=g=9.8 m/s^2
vf=0
vi=5.14 km/s
s=?
Clearing s:
s=(vf^2-vi^2)/(2g)=((0-(5.14x10^3)^2)/(2*9.8)=1.35x10^6 m
the total distance is equal to:
stotal=s+L1=1.35x10^6+4.18x10^6=5.53x10^6 m