Answer: The color of an image is identical to the color of the object forming the image. When you look at yourself in a mirror, the color of your eyes doesn’t change. The fact that the color is the same is evidence that the frequency of light doesn’t change upon reflection. 2.
Hope this helps!!
Answer: <u>Trough </u> can lift the 403,342 ton pioneering spirit crane vessel 10 meters in 30 seconds as if it was a cork. This about 36 GJ if work and 1 GW of power.
Explanation:
Trough is the correct answer because<u> pioneering scale usually abide only on trough not on the other given options</u>. A long , narrow depression between the waves or ridges is known as a trough. The lower point in the period is the trough.
- <u>Speed -:</u> Speed is the distance per unit of time that a body moves. It's a quantity scaler that has just magnitude.
- <u>Wave energy -: </u>The transmission and capture of energy by ocean surface waves is wave energy (or wave power). The energy collected is then used for all sorts of useful work, including the generation of electricity, water desalination, and water pumping.
- <u>Crest -</u>: A crest point within a cycle on a wave with the highest value of upward displacement. A crest is a point on a surface wave where the medium's displacement is at its height.
- <u>Amplitude -:</u> The maximum displacement or distance measured from its equilibrium position, moved by a point on a vibrating body or wave, is called amplitude. It is equal to half of the vibration path's length.
- <u>Period-</u>: The duration T is the time needed to pass a given point for one complete cycle of vibration. The wave length decreases as the frequency of a wave increases.
- <u>Wavelength-:</u> The distance between two successive crests or troughs of a wave can be described as the wavelength. The frequency is inversely proportional to the wavelength. This implies that the longer the wavelength, the smaller the frequency. Similarly, the shorter the wavelength, the higher the frequency would be.
- <u>Frequency</u> -: Frequency defines the number of waves in a given amount of time that travel through a fixed location. In the Hertz unit, frequency is normally measured.
- <u>Information</u> -: A piece of data is a basic fact about the identity or properties of an object, i.e. a portion of its example.
- <u>Milli -</u>: Milli is known as a merged form meaning 'thousand' (millipede) used in the metric system for unit names equal to one thousandth of the base unit (millimeter) given.
Hence , the answer is <u>TROUGH.</u>
<span>
<span><span>
<span>
Answer:The Aluminum loses a
little more than twice the heat of the Copper.Explanation:<span>
Since specific heat is part of the equation. A smaller specific heat will
create a smaller heat gain or loss. </span>
<span>Hope this helped!!!!</span></span>
</span>
</span></span>
Answer:
Later high school years and freshman year of college
Explanation:
The transition from high school to college is an important developmental milestone that holds the potential for personal growth and behavioral change. A cohort of 2,025 students was recruited during the summer before they matriculated into college and completed Internet-based surveys about their participation in a variety of behavioral risks during the last three months of high school and throughout the first year of college. Alcohol use, marijuana use, and sex with multiple partners increased during the transition from high school to college, whereas driving after drinking, aggression, and property crimes decreased. Those from rural high schools and those who elected to live in private dormitories in college were at highest risk for heavy drinking and driving after drinking.
Answers:
a) 
b) 
c) 
Explanation:
<h3>a) Impulse delivered to the ball</h3>
According to the Impulse-Momentum theorem we have the following:
(1)
Where:
is the impulse
is the change in momentum
is the final momentum of the ball with mass
and final velocity (to the right) 
is the initial momentum of the ball with initial velocity (to the left) 
So:
(2)
(3)
(4)
(5)
<h3>b) Time </h3>
This time can be calculated by the following equations, taking into account the ball undergoes a maximum compression of approximately
:
(6)
(7)
Where:
is the acceleration
is the length the ball was compressed
is the time
Finding
from (7):
(8)
(9)
(10)
Substituting (10) in (6):
(11)
Finding
:
(12)
<h3>c) Force applied to the ball by the bat </h3>
According to Newton's second law of motion, the force
is proportional to the variation of momentum
in time
:
(13)
(14)
Finally:
