The correct answer to the question is : C) The horizontal momentum and the vertical momentum are both conserved.
EXPLANATION :
Before coming into any conclusion, first we have to understand the law of conservation of momentum.
As per the law of conservation of momentum, the total linear as well as angular momentum of an isolated system is always conserved . The law of conservation of energy is a universal fact.
Hence, during any type of collision, the total momentum is always conserved.
Hence, the total horizontal momentum as well as total vertical momentum are always conserved during both elastic as well as inelastic collision.
The best conclusion that can be drawn is that D) A current does not flow in the wire
2.1) (i) W = mg downwards
(ii) N = R = Normal Reaction from the ground upwards
(iii) Fe = Force of engine towards the right
(iv) f = friction towards the left
(v) ma = Constant acceleration towards right.
2.2.1)
v = 25 m/s
u = 0 m/s
∆v = v - u = (25 - 0) m/s = 25 m/s
x = X
∆t = 50 s

a = 0.5 m/s².
2.2.2)
F = ma = 900 kg × 0.5 m/s² = 450 N.
2.2.3)


2.3)
Fe = f + ma
Fe - f = ma
For velocity to be constant,
a should be 0, or, a = 0,
Fe = f = 270 N
2.4.1)
v = 0
u = 25 m/s
a = -0.5 m/s²
v = u + at
t = -u/a = -(25)/(-0.5) = 50 s.
2.4.2)
x = -625/(2×(-0.5)) = 625 m.
Answer:
The answer is 3.
Explanation:
The answer to this question can be found by applying the right hand rule for which the pointer finger is in the direction of the electron movement, the thumb is pointing in the direction of the magnetic field, so the effect that this will have on the electrons is the direction that the middle finger points in which is right in this example.
So as a result of the magnetic field directed vertically downwards which is at a right angle with the electron beams, the electrons will move to the right and the spot will be deflected to the right of the screen when looking from the electron source.
I hope this answer helps.
Answer:
1. 0.574 kJ/kg
2. 315.7 MW
Explanation:
1. The mechanical energy per unit mass of the river is given by:


Where:
Ek is the kinetic energy
Ep is the potential energy
v is the speed of the river = 3 m/s
g is the gravity = 9.81 m/s²
h is the height = 58 m

Hence, the total mechanical energy of the river is 0.574 kJ/kg.
2. The power generation potential on the river is:

Therefore, the power generation potential of the entire river is 315.7 MW.
I hope it helps you!