Your answer is D Uranus because that's the only planet that rotates on its side besides that I'm going to say D.
Both carbon and lead belong to Group IV elements, and thus they have the same number of valence electrons.
<span>In
each of the other options, the two elements belong to different groups,
and thus they do NOT have the same number of valence electrons.
I hope this helped you, please tell me if I am correct or not <3
</span>
at equilibrium.
<h3>Explanation</h3>
Concentration for each of the species:
There was no Y to start with; its concentration could only have increased. Let the change in
be
.
Make a
table.
Two moles of X will be produced and two moles of Z consumed for every one mole of Y produced. As a result, the <em>change</em> in
will be
and the <em>change</em> in
will be
.
.
Add the value in the C row to the I row:
.
What's the equation of
for this reaction? Raise the concentration of each species to its coefficient. Products go to the numerator and reactants are on the denominator.
.
. As a result,
.
.
The degree of this polynomial is three. Plot the equation
on a graph and look for any zeros. There's only one zero at
. All three concentrations end up greater than zero.
Hence the equilibrium concentration of Y:
.