Answer:
The answer to your question is P2 = 2676.6 kPa
Explanation:
Data
Volume 1 = V1 = 12.8 L Volume 2 = V2 = 855 ml
Temperature 1 = T1 = -108°C Temperature 2 = 22°C
Pressure 1 = P1 = 100 kPa Pressure 2 = P2 = ?
Process
- To solve this problem use the Combined gas law.
P1V1/T1 = P2V2/T2
-Solve for P2
P2 = P1V1T2 / T1V2
- Convert temperature to °K
T1 = -108 + 273 = 165°K
T2 = 22 + 273 = 295°K
- Convert volume 2 to liters
1000 ml -------------------- 1 l
855 ml -------------------- x
x = (855 x 1) / 1000
x = 0.855 l
-Substitution
P2 = (12.8 x 100 x 295) / (165 x 0.855)
-Simplification
P2 = 377600 / 141.075
-Result
P2 = 2676.6 kPa
The balanced chemical equation is :
5P₄ + 36OH → 12HPO₃⁻² (aq) + 8PH₃ (acidic)
Here the oxidation number of P changed from 0 to -3 in PH₃ and increases from 0 to +3 in HPO₃⁻². When P₄ changes to PH₃ reduction reaction is taking place as there is addition of hydrogen and when P₄ changes to HPO₃⁻² oxidation takes place as there is addition of oxygen.
Thus clearly both reduction and oxidation are taking place.
Thus, we can infer that here P₄ is both oxidizing as well as reducing agent.
To know more about oxidation number here:
brainly.com/question/13182308
#SPJ4
Your correct answer is (B) Ratio of neutrons to protons
Hope this helps! :)
Answer:
every method of removing heat from LED's should be considered. Conduction, convection, and radiation are the three means of heat transfer. Typically, LED's are encapsulated in a transparent resin, which is a poor thermal conductor. Nearly all heat produced is conducted through the back side of the chip. Heat is generated from the PN junction by electrical energy that was not converted to useful light, and conducted to outside ambiance through a long path, from junction to solder point, solder point to board, and board to the heat sink and then to the atmosphere. A typical LED side view and its thermal model are shown in the figures.
Explanation: