1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
konstantin123 [22]
2 years ago
5

How is an interference pattern formed by a diffraction grating different from the pattern formed by a double slit

Physics
1 answer:
belka [17]2 years ago
8 0

Answer:

Evaluate the following numerical expressions.

6 + 3 • 4 =

18

(6 + 3) ÷ (4 – 5) =

Explanation:

Evaluate the following numerical expressions.

6 + 3 • 4 =

18

(6 + 3) ÷ (4 – 5) =

You might be interested in
8. Fig. 4.1 shows a heavy ball B of weight W suspended from a fixed beam by two ropes P and Q.
mart [117]

Answer:

The resultant tension of the two ropes is approximately 42.4 N

The length of the line representing the resultant tension is approximately 8.48 cm

Please find included  with the answer the scale drawing created with Microsoft Word

Explanation:

The given parameters are;

The tension in rope P, T_P = 30 N

The tension in rope Q, T_Q = 30 N

The angle the rope, 'P', makes with the horizontal = 45°

The angle the rope, 'Q', makes with the horizontal = 45°

The scale factor of the scale diagram, S.F. = 5.0 N/cm

By the resolution of forces at equilibrium, we have;

The sum of the vertical forces, \Sigma F_y = T_P_y + T_Q_y + W = 0

∴ W = -(T_P_y + T_Q_y)

W = -(30 × sin(45°) + 30 × sin(45°)) = -42.4264068712

The weight of the heavy ball, W ≈ 42.4 N acting downwards

The sum of the horizontal forces, \Sigma F_x = T_P_x + T_Q_x  = 0

The length of the resultant force, W = W/(S.F.) ≈ 42.4 N/(5.0 N/cm) = 8.48 cm

The drawing of the vectors using the scale factor of 5.0 N/cm is created using Microsoft Word is included

3 0
2 years ago
A 6.5 kg rock thrown down from a 120m high cliff with initial velocity 18 m/s down. Calculate
Olegator [25]

Answer:

See the answers below.

Explanation:

In order to solve this problem we must use the principle of energy conservation. Which tells us that the energy of a body will always be the same regardless of where it is located. For this case we have two points, point A and point B. Point A is located at the top at 120 [m] and point B is in the middle of the cliff at 60 [m].

E_{A}=E_{B}

The important thing about this problem is to identify the types of energy at each point. Let's take the reference level of potential energy at a height of zero meters. That is, at this point the potential energy is zero.

So at point A we have potential energy and since a velocity of 18 [m/s] is printed, we additionally have kinetic energy.

E_{A}=E_{pot}+E_{kin}\\E_{A}=m*g*h+\frac{1}{2}*m*v^{2}

At Point B the rock is still moving downward, therefore we have kinetic energy and since it is 60 [m] with respect to the reference level we have potential energy.

E_{B}=m*g*h+\frac{1}{2}*m*v^{2}

Therefore we will have the following equation:

(6.5*9.81*120)+(0.5*6.5*18^{2} )=(6.5*9.81*60)+(0.5*6.5*v_{B}^{2} )\\3.25*v_{B}^{2} =4878.9\\v_{B}=\sqrt{1501.2}\\v_{B}=38.75[m/s]

The kinetic energy can be easily calculated by means of the kinetic energy equation.

KE_{B}=\frac{1}{2} *m*v_{B}^{2}\\KE_{B}=0.5*6.5*(38.75)^{2}\\KE_{B}=4878.9[J]

In order to calculate the velocity at the bottom of the cliff where the reference level of potential energy (potential energy equal to zero) is located, we must pose the same equation, with the exception that at the new point there is only kinetic energy.

E_{A}=E_{C}\\6.5*9.81*120+(0.5*9.81*18^{2} )=0.5*6.5*v_{C}^{2} \\v_{c}^{2} =\sqrt{2843.39}\\v_{c}=53.32[m/s]

5 0
3 years ago
A mass weight of 120N is hung from two strings. what is the tension?
kramer
The weight should be shared between the two string equally. Therefore, tension in each string, T is;

T = 120 N/2 = 60 N
7 0
3 years ago
Read 2 more answers
A small glider is coasting horizontally when suddenly a very heavy piece of cargo falls out of the bottom of the plane.
myrzilka [38]

Answer:

a. The plane speeds up but the cargo does not change speed.

Explanation:

Just to make it clear, the question is as follows from what I understand.

A small glider is coasting horizontally when suddenly a very heavy piece of cargo falls out of the bottom of the plane.  You can neglect air resistance.

Just after the cargo has fallen out:

a. The plane speeds up but the cargo does not change speed.

b. The cargo slows down but the plane does not change speed.

c. Neither the cargo nor the plane change speed.

d. The plane speeds up and the cargo slows down.

e. Both the cargo and the plane speed up.

And we are requested to choose the right answer under the given conditions. We know the glider has no motor, then it must be in free fall movement, then it is experiencing some force that pulls it to the from due to the gravity effect on it, and a force in general is calculated by

F=m*a, m:= mass of the object, a:= acceleration.

Here we are only considering the horizontal effect of the forces, then since the mass is reduced the acceleration must increase to compensate and maintain  the equilibrium of the forces, then the glider being lighter can travel faster due to the acceleration. On the other hand by the time the cargo left the glider there was no acceleration and the speed it had at the moment he left the plane continues, then the cargo does not change its speed, then horizontally speaking the answer would be a. The plane speeds up but the cargo does not change speed.

5 0
3 years ago
I'm pretty sure it's density but I need another opinion.
bixtya [17]
I agree with density
6 0
3 years ago
Read 2 more answers
Other questions:
  • Is it possible to be moving but not be in motion?
    13·2 answers
  • Identical marbles are released from the same height on each of the following four frictionless ramps . Compare the speed of the
    8·1 answer
  • Adam wants to decrease his current weight, so he should?
    11·2 answers
  • What does a chemical equation describe ?
    8·2 answers
  • a golf ball is hit with a velocity of 30.0 m/s at an angle of 25 degrees about the horizontal. how long is the ball in the air a
    7·1 answer
  • Electrical wire with a diameter of .5 cm is wound on a spool with a radius of 30 cm and a height of 24 cm.
    14·1 answer
  • Which carbon reservoirs did not receive any carbon?
    5·1 answer
  • Help please I’ll mark as brainliest
    12·1 answer
  • A particle A of mass 2kg originally moving with a velocity of 3ms collides directly with another particles B of mass 2kg moving
    7·1 answer
  • suppose you were pushing on a heavy bucket of stones it 100 N of force, and it did not move. How many newtons of force would be
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!