Just divide the both, you will get the answer!
does it sound rude?
im sorry for that!
Let us situate this on the x axis, and let our uniform line of charge be positioned on the interval <span>(−L,0]</span> for some large number L. The voltage V as a function of x on the interval <span>(0,∞)</span> is given by integrating the contributions from each bit of charge. Let the charge density be λ. Thus, for an infinitesimal length element <span>d<span>x′</span></span>, we have <span>λ=<span><span>dq</span><span>d<span>x′</span></span></span></span>.<span>V(x)=<span>1/<span>4π<span>ϵ0</span></span></span><span>∫line</span><span><span>dq/</span>r</span>=<span>λ/<span>4π<span>ϵ0</span></span></span><span>∫<span>−L</span>0</span><span><span>d<span>x/</span></span><span>x−<span>x′</span></span></span>=<span>λ/<span>4π<span>ϵ0</span></span></span><span>(ln|x+L|−ln|x|)</span></span>
Answer:
All forms of energy are either kinetic or potential. The energy associated with motion is called kinetic energy . The energy associated with position is called potential energy . Potential energy is not "stored energy".
Explanation:
<span>Pice=920kg/m^3
deltaP=PgH=920kg/m^3 X 9.80665m/s^2 X 1000m = 9022118 Pa
P=Po + deltaP=101.325 + 9022 = 9123kPa</span>
<h2>Answer: a. Yellow
</h2>
According to the additive theory of color, when we join the <u>three primary colors of light</u> (Red + Green + Blue) we get White light.
On the other hand we have <u>secondary colors of ligh</u>t that are:
Yellow = Red + Green
Magenta = Blue + Red
Cyan = Blue + Green
Now, if we know that:
Red + Green + Blue = White
And:
Red + Green = Yellow
Then:
<h2>Yellow + Blue = White</h2>