In order to overcome an object’s inertia (resistance to change), it must be acted upon by an unbalanced force, so the answer to the problem is letter C.
Answer:
Explanation:
Some common conductors are copper, aluminum, gold, and silver. Some common insulators are glass, air, plastic, rubber, and wood.
Answer:
<em>Infrared telescope and camera</em>
<em></em>
Explanation:
An infrared telescope uses infrared light to detect celestial bodies. The infrared radiation is one of the known forms of electromagnetic radiation. Infrared radiation is given off by a body possessing some form of heat. All bodies above the absolute zero temperature in the universe radiates some form of heat, which can then be detected by an infrared telescope, and infrared radiation can be used to study or look into a system that is void of detectable visible light.
Stars are celestial bodies that are constantly radiating heat. In order to see a clearer picture of the these bodies, <em>Infrared images is better used, since they are able to penetrate the surrounding clouds of dust,</em> and have located many more stellar components than any other types of telescope, especially in dusty regions of star clusters like the Trapezium cluster.
Answer:
Y = 3.87 x 10⁻³ m = 3.87 mm
Explanation:
This problem can be solved by using Young's double-slit experiment formula:

where,
Y = fringe spacing = ?
L = slit to screen distance = 2 m
λ = wavelength of light = 580 nm = 5.8 x 10⁻⁷ m
d = slit width = 0.3 mm = 3 x 10⁻⁴ m
Therefore,

<u>Y = 3.87 x 10⁻³ m = 3.87 mm</u>
A tomato is apart of the fruit family:) hope this helps!