Answer:
The frequency of oscillation of the simple pendulum is 0.49 Hz.
Explanation:
Given that,
Mass of the simple pendulum, m = 0.35 kg
Length of the string to which it is attached, l = 1 m
We need to find the frequency of oscillation. The frequency of oscillation of the simple pendulum is given by :

So, the frequency of oscillation of the simple pendulum is 0.49 Hz. Hence, this is the required solution.
Answer:
<h2>35</h2>
Explanation:
According to snell's law which states that the ratio of the sin of incidence (i) to the angle of refraction(n) is a constant for a given pair of media.
sini/sinr = n
n is the constant = refractive index
Since the diver shines light up to the surface of a flat glass-bottomed boat, the refractive index n = nw/ng
nw is the refractive index of water and ng is that of glass
sini/sinr = nw/ng
given i = 30°, nw = 1.33, ng = 1.5, r = angle the light leave the glass
On substitution;
sin 30/sinr = 1.33/1.5
1.5sin30 = 1.33sinr
sinr = 1.5sin30/1.33
sinr = 0.75/1.33
sinr = 0.5639
r = arcsin0.5639
r ≈35°
angle the light leave the glass is 35°
Answer:
0.167m/s
Explanation:
According to law of conservation of momentum which States that the sum of momentum of bodies before collision is equal to the sum of the bodies after collision. The bodies move with a common velocity after collision.
Given momentum = Maas × velocity.
Momentum of glider A = 1kg×1m/s
Momentum of glider = 1kgm/s
Momentum of glider B = 5kg × 0m/s
The initial velocity of glider B is zero since it is at rest.
Momentum of glider B = 0kgm/s
Momentum of the bodies after collision = (mA+mB)v where;
mA and mB are the masses of the gliders
v is their common velocity after collision.
Momentum = (1+5)v
Momentum after collision = 6v
According to the law of conservation of momentum;
1kgm/s + 0kgm/s = 6v
1 =6v
V =1/6m/s
Their speed after collision will be 0.167m/s
The answer is Hypothesis because she can predict that she needs a bigger bag
Answer:
It would take
time for the capacitor to discharge from
to
.
It would take
time for the capacitor to discharge from
to
.
Note that
, and that
.
Explanation:
In an RC circuit, a capacitor is connected directly to a resistor. Let the time constant of this circuit is
, and the initial charge of the capacitor be
. Then at time
, the charge stored in the capacitor would be:
.
<h3>a)</h3>
.
Apply the equation
:
.
The goal is to solve for
in terms of
. Rearrange the equation:
.
Take the natural logarithm of both sides:
.
.
.
<h3>b)</h3>
.
Apply the equation
:
.
The goal is to solve for
in terms of
. Rearrange the equation:
.
Take the natural logarithm of both sides:
.
.
.