Answer:
a)
,
, b)
, 
Explanation:
a) The ideal gas is experimenting an isocoric process and the following relationship is used:

Final temperature is cleared from this expression:


The number of moles of the ideal gas is:



The final temperature is:


The final pressure is:



b) The ideal gas is experimenting an isobaric process and the following relationship is used:

Final temperature is cleared from this expression:




The final volume is:



Answer:
All around you there are chemical reactions taking place. Green plants are photosynthesising, car engines are relying on the reaction between petrol and air and your body is performing many complex reactions. In this chapter we will look at two common types of reactions that can occur in the world around you and in the chemistry laboratory. These two types of reactions are acid-base reactions and redox reactions.
Explanation:
They are both sources of power for objects that people use.
One mole of water weighs 18 grams. H₂O is composed of 2H= 2 and 1 0=16 adding gives you 18. number of moles= mass/ Relative Molecular Mass
Therefore, mass= Relative Molecular Mass×number of moles
= 18×5 moles
= 90 grams
Answer:
a) Unsaturated
b) Supersaturated
c) Unsaturated
Explanation:
A saturated solution contains the <u>maximum amount of a solute that will dissolve in a given solvent at a specific temperature</u>.
An unsaturated solution contains <u>less solute than it has the capacity to dissolve. </u>
A supersaturated solution, <u>contains more solute than is present in a saturated solution</u>. Supersaturated solutions are not very stable. In time, some of the solute will come out of a supersaturated solution as crystals.
According to these definitions and considering that the solubility of KCl in 100 mL of H₂O at <u>20 °C is 34 g</u>, and at <u>50 °C is 43 g</u> we can label the solutions:
a) 30 g in 100 mL of H₂O at 20 °C ⇒ unsaturated
b) 65 g in 100 mL of H₂O at 50 °C ⇒ supersaturated
c) 42 g in 100 mL of H₂O at 50 °C and slowly cooling to 20 °C to give a clear solution <u>with no precipitate</u> ⇒ unsaturated (if it were saturated it would have had precipitate)