The answer is:
Forces acting on the sled are paired with equal and opposite forces.
The explanation:
About to push you, this means that he doesn't push yet. If the sled is on level ground and no one is pushing it, then forces are equal and opposite.
The gravity force pulls down and the ground pushes up.
This is Newton's third law:
Newton's third law: If an object A exerts a force on object B, then object B must exert a force of equal magnitude and opposite direction back on object A.
This law represents a certain symmetry in nature: forces always occur in pairs, and one body cannot exert a force on another without experiencing a force itself.
We can also see Newton’s third law at work by taking a look at how people move about. Consider a swimmer pushing off from the side of a pool.
Answer:
a. 5.23 m/s² b. 44.23 N
Explanation:
a. What is the centripetal acceleration of the hammer?
The centripetal acceleration a = rω² where r = radius of circle and ω = angular speed.
Now r = length of chain = 1.4 m and ω = 0.595 rev/s = 0.595 × 2π/s = 3.74 rad/s.
So a = rω²
= 1.4 m × (3.74 rad/s)²
= 5.23 m/s²
b. What is the tension in the chain?
The tension in the chain, T = ma where m = mass of hammer = 8.45 kg and a = centripetal acceleration of hammer = 5.23 m/s². This tension is the centripetal force on the hammer.
So, T = 8.45 kg × 5.23 m/s²
= 44.23 N
They are both right because you can note both things, I mean Raphael and Lucinda, both has a right statement or explanation about the wave. Wave by nothing is both for its wavelength and for its frequency. So Raphael and Lucinda are both correct because you can note both wavelength and frequency.
Answer:c
Explanation:because when u push the oar back u go forward