Operant conditioning, sometimes called <em>instrumental learning</em>, was first extensively studied by Edward L. Thorndike, who observed the behavior of cats trying to escape from home-made puzzle boxes.
Hope this helps!
According to the description given in the photo, the attached figure represents the problem graphically for the Atwood machine.
To solve this problem we must apply the concept related to the conservation of energy theorem.
PART A ) For energy conservation the initial kinetic and potential energy will be the same as the final kinetic and potential energy, so



PART B) Replacing the values given as,




Therefore the speed of the masses would be 1.8486m/s
Thank you for posting your Physics question here. I hope the answer helps. Upon calculating the ramp with the horizontal the answer is 20.49 Deg. Below is the solution:
Y = 7 m.
<span>r = 20 m. </span>
<span>sinA = Y/r = 7/20 = 0.35. </span>
<span>A = 20.49 Deg.</span>
Answer:
Kinetic energy is energy possessed by a body by virtue of its movement. Potential energy is the energy possessed by a body by virtue of its position or state. While kinetic energy of an object is relative to the state of other objects in its environment, potential energy is completely independent of its environment.
Both energies are related to motion.
Explanation:
This is the equation for elastic potential energy, where U is potential energy, x is the displacement of the end of the spring, and k is the spring constant.
<span> U = (1/2)kx^2
</span><span> U = (1/2)(5.3)(3.62-2.60)^2
</span> U = <span>
<span>2.75706 </span></span>J