Answer:
1) potential energy of the bond.
2) Linear
3) The electrons are transferred from K to Cl.
4) ClF
5) Oxygen
6) Electrolysis
7) Double displacement
Explanation:
As two atoms approach each other in a bonding situation, the potential energy of the bond is minimized as the internuclear distance of the bonding atoms decreases.
BeH2 has two electron domains and the central beryllium atom is sp2 hybridized. According to valence shell electron pair repulsion theory. A molecule having two regions of electron density will lead to a linear molecule.
KCl is an ionic compound hence there is a transfer of electrons from K(metal) to Cl(nonmetal).
ClF has partial charges because it contains a polar covalent bond. The partial charges arise from the dipole within the molecule. LiF is a pure ionic compound formed by transfer of electrons from Li to F. The species possess full and not partial charges.
When an oxygen atom bonds with another oxygen atom, what has been formed is a homonuclear covalent bond. Since the electro negativity of the both atoms is exactly the same, a pure covalent bond is formed. Recall that polar covalent bonds are formed when there is a significant electro negativity difference between the bonding atoms.
When direct current is passed through certain salt solutions during electrolysis, gases may be evolved and collected at the appropriate electrodes.
A double-replacement reaction is a reaction in which the cations and anions present in two different ionic compounds that are reacting together exchange their positions to form two new compounds on the product side. For instance, look at the reaction shown in question 7 as a typical example of this;
AgNO3 (s) + NaCl (s) → AgCl (s) + NaNO3 (s).