Explanation:
The given reaction is as follows.

Hence, number of moles of NaOH are as follows.
n = 
= 0.005 mol
After the addition of 25 ml of base, the pH of a solution is 3.62. Hence, moles of NaOH is 25 ml base are as follows.
n = 
= 0.0025 mol
According to ICE table,

Initial: 0.005 mol 0.0025 mol 0 0
Change: -0.0025 mol -0.0025 mol +0.0025 mol
Equibm: 0.0025 mol 0 0.0025 mol
Hence, concentrations of HA and NaA are calculated as follows.
[HA] = 
[NaA] = 
![[A^{-}] = [NaA] = \frac{0.0025 mol}{V}](https://tex.z-dn.net/?f=%5BA%5E%7B-%7D%5D%20%3D%20%5BNaA%5D%20%3D%20%5Cfrac%7B0.0025%20mol%7D%7BV%7D)
Now, we will calculate the
value as follows.
pH = 
![pK_{a} = pH - log \frac{[A^{-}]}{[HA]}](https://tex.z-dn.net/?f=pK_%7Ba%7D%20%3D%20pH%20-%20log%20%5Cfrac%7B%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
= 
= 3.42
Thus, we can conclude that
of the weak acid is 3.42.
Answer:b
Explanation:
I honestly don’t know if this I right but that would be my guess
I’m pretty sure the immediate answer is 2. Using the equation 60N=(30kg)x2(whatever unit of measure) also it will change because if you change the mass or the Net Force, your going to have to redo the equation based on the new information.
An ionic<span> crystal consists of </span>ions<span> bound together by electrostatic attraction. The arrangement of </span>ions<span> in a regular, geometric structure is called a crystal lattice. Examples of such </span>crystals<span> are the alkali halides, which include: potassium fluoride </span>