<span>The surface charge density = q/A
So q = surface charge density x Area
The surface area of a sphere of radius R is 4*Pi*R^2. R = d/2 where d is diameter. This leaves us with 1.3/2 = 0.65. Area = 4 * pie * (0.65)^2 = 5.30998.
So the net charge q = 8.1 * 10^(-6) * 5.30998 = 42.47998 * 10^(-6)
The Total electric flux = Q/e_0 where , 8.854 Ă— 10â’12, e_0 is permitivity of free space.
So Flux = 42.47998 * 10^(-6) / 8.854 * 10(â’12) = 4.833 * 10^(-6 - (-12)) = 4.833 * 10^(6)</span>
Answer:
The rate of transfer of heat is 0.119 W
Solution:
As per the question:
Diameter of the fin, D = 0.5 cm = 0.005 m
Length of the fin, l =30 cm = 0.3 m
Base temperature,
Air temperature,
k = 388 W/mK
h =
Now,
Perimeter of the fin, p =
Cross-sectional area of the fin, A =
A =
To calculate the heat transfer rate:
where
Now,
Where are the images?!?!?
Answer:
I) You walk barefoot on the hot street and it burns your toes.
II) When you get into a car with hot black leather in the middle of the summer and your skin starts to get burned.
Explanation:
In conduction mode of heat transfer we know that the energy is transferred from one system to other system due to direct contact of two bodies
Here due to this direct contact the energy is transferred via a given solid or liquid medium
In this type of heat transfer medium particles will remain in its own position only the energy is transferred.
So here we can say the correct answer will be
I) You walk barefoot on the hot street and it burns your toes.
II) When you get into a car with hot black leather in the middle of the summer and your skin starts to get burned.
To find the impulse you multiply the mass by the change in velocity (impulse=mass×Δvelocity). So in this case, 3 kg × 12 m/s ("12" because the object went from zero m/s to 12 m/s).
The answer is 36 kg m/s