A. The acceleration of the ball while it is in flight?
magnitude is 0 m/s² (magnitude is zero)
B. The velocity of the ball when it reaches its maximum height is 0 m/s (magnitude is zero)
C. The initial velocity of the ball 8.036 m/s upward
D. The maximum height reached by the ball is 3.29 m
<h3>A. How to determine the acceleration in the flight</h3>
Considering that the ball came to rest after 1.64s, it means the entire acceleration of the flight is zero as the ball was not moving in any form again.
<h3>B. How to determine the velocity at maximum height</h3>
At maximum height, the velocity of the ball is zero as it no longer has magnitude to keep going upwards. Hence the ball begins to ball down.
<h3>C. How to determine the initial velocity</h3>
- Acceleration due to gravity (g) = 9.8 m/s²
- Final velocity (v) = 0 m/s
- Time of flight (T) = 1.64 s
- Time to reach maximum height (t) = T / 2 = 1.64 / 2 = 0.82 s
- Initial velocity (u) =?
v = u - gt (since the ball is going against gravity)
0 = u - (9.8 × 0.82)
0 = u - 8.036
Collect like terms
u = 0 + 8.036
u = 8.036 m/s upward
<h3>D. How to determine the maximum height reached by the ball</h3>
- Time to reach maximum height (t) = T / 2 = 1.64 / 2 = 0.82 s
- Acceleration due to gravity (g) = 9.8 m/s²
- Maximum height (h)
h = ½gt²
h = ½ × 9.8 × 0.82²
h = 3.29 m
Learn more about motion under gravity:
brainly.com/question/20385439
#SPJ1
Answer:
a. Effort = 960 Newton
b. Mechanical advantage (M.A) = 0.625
c. Velocity ratio (V.R) = 1.67
Explanation:
Given the following data;
Load = 600 N
Length of crowbar = 200 cm
Length of load arm = 0.75 m
Conversion:
100 cm = 1 m
X cm = 0.75 m
Cross-multiplying, we have;
X = 0.75 * 100 = 75 cm
First of all, we would find the effort arm;
Effort arm = length of crow bar - length of load arm
Effort arm = 200 - 75
Effort arm = 125 cm
Next, we would determine the mechanical advantage (M.A) of the crow bar;
Substituting the values into the formula, we have;
M.A = 0.625
To find the effort of the crow bar;
Making "effort" the subject of formula, we have;
Effort = 960 Newton
Lastly, we would determine the velocity ratio (V.R);
V.R = 1.67
Answer:
the x and y values
Explanation:
because on the table the x is the input and y is the output
Answer:
(ω₁ / ω₂) = 1.9079
Explanation:
Given
R₁ = 3.59 cm
R₂ = 7.22 cm
m₁ = m₂ = m
K₁ = K₂
We know that
K₁ = Kt₁ + Kr₁ = 0.5*m₁*v₁²+0.5*I₁*ω₁²
if
v₁ = ω₁*R₁
and
I₁ = (2/3)*m₁*R₁² = (2/3)*m*R₁²
∴ K₁ = 0.5*m*ω₁²*R₁²+0.5*(2/3)*m*R₁²*ω₁² <em>(I)</em>
then
K₂ = Kt₂ + Kr₂ = 0.5*m₂*v₂²+0.5*I₂*ω₂²
if
v₂ = ω₂*R₂
and
I₂ = 0.5*m₂*R₂² = 0.5*m*R₂²
∴ K₂ = 0.5*m*ω₂²*R₂²+0.5*(0.5*m*R₂²)*ω₂² <em>(II)</em>
<em>∵ </em>K₁ = K₂
⇒ 0.5*m*ω₁²*R₁²+0.5*(2/3)*m*R₁²*ω₁² = 0.5*m*ω₂²*R₂²+0.5*(0.5*m*R₂²)*ω₂²
⇒ ω₁²*R₁²+(2/3)*R₁²*ω₁² = ω₂²*R₂²+0.5*R₂²*ω₂²
⇒ (5/3)*ω₁²*R₁² = (3/2)*ω₂²*R₂²
⇒ (ω₁ / ω₂)² = (3/2)*R₂² / ((5/3)*R₁²)
⇒ (ω₁ / ω₂)² = (9/10)*(7.22/ 3.59)²
⇒ (ω₁ / ω₂) = (7.22/ 3.59)√(9/10)
⇒ (ω₁ / ω₂) = 1.9079
The current flowing in each resistor of the circuit is 4 A.
<h3>
Equivalent resistance of the series resistors</h3>
The equivalent resistance of the series circuit is calculated as follows;
6 Ω and 4 Ω are in series = 10 Ω
5 Ω and 10Ω are in series = 15 Ω
<h3>Effective resistance of the circuit</h3>

<h3>Current flowing in the circuit</h3>
V = IR
I = V/R
I = 24/6
I = 4 A
Learn more about resistors in parallel here: brainly.com/question/15121871