Answer:
a) V_f = 25.514 m/s
b) Q =53.46 degrees CCW from + x-axis
Explanation:
Given:
- Initial speed V_i = 20.5 j m/s
- Acceleration a = 0.31 i m/s^2
- Time duration for acceleration t = 49.0 s
Find:
(a) What is the magnitude of the satellite's velocity when the thruster turns off?
(b) What is the direction of the satellite's velocity when the thruster turns off? Give your answer as an angle measured counterclockwise from the +x-axis.
Solution:
- We can apply the kinematic equation of motion for our problem assuming a constant acceleration as given:
V_f = V_i + a*t
V_f = 20.5 j + 0.31 i *49
V_f = 20.5 j + 15.19 i
- The magnitude of the velocity vector is given by:
V_f = sqrt ( 20.5^2 + 15.19^2)
V_f = sqrt(650.9861)
V_f = 25.514 m/s
- The direction of the velocity vector can be computed by using x and y components of velocity found above:
tan(Q) = (V_y / V_x)
Q = arctan (20.5 / 15.19)
Q =53.46 degrees
- The velocity vector is at angle @ 53.46 degrees CCW from the positive x-axis.
The first law states that “objects at rest and objects in motion remain in motion in a straight line unless acted upon by an unbalanced force”. Keeping the ice smooth will make sure there is not friction, friction would slow the puck down
TRUE!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Answer:
final displacement lf = 0.39 m
Explanation:
from change in momentum equation:
![\delta p = m \sqrt(2g * y/x)* [\sqrt li + \sqrt lf]](https://tex.z-dn.net/?f=%5Cdelta%20p%20%3D%20m%20%5Csqrt%282g%20%2A%20y%2Fx%29%2A%20%5B%5Csqrt%20li%20%2B%20%5Csqrt%20lf%5D)
given: m = 0.4kg, y/x = 19/85, li = 1.9 m,
\delta p = 1.27 kg*m/s.
putting all value to get the final displacement value
![1.27 = 0.4\sqrt(2*9.81 *(19/85))* [\sqrt 1.9 + \sqrt lf]](https://tex.z-dn.net/?f=1.27%20%3D%200.4%5Csqrt%282%2A9.81%20%2A%2819%2F85%29%29%2A%20%5B%5Csqrt%201.9%20%2B%20%5Csqrt%20lf%5D)
final displacement lf = 0.39 m
Torque [Nm] = Force [N] x Force arm [m]
C=F*b=20*0.20=4 Nm
The correct answer is C