Answer:
E = 10⁵ J
Explanation:
given,
Power, P = 100 TW
= 100 x 10¹² W
time, t = 1 ns
= 1 x 10⁻⁹ s
The energy of a single pulse is:-
Energy = Power x time
E = P t
E = 100 x 10¹² x 1 x 10⁻⁹
E = 10⁵ J
The energy contained in a single pulse is equal to 10⁵ J
Answer:
Explanation:
The rod will act as pendulum for small oscillation .
Time period of oscillation

angular frequency ω = 2π / T
= 
b )
ω = 20( given )
velocity = ω r = ω l
Let the maximum angular displacement in terms of degree be θ .
1/2 m v ² = mgl ( 1 - cosθ ) ,
[ l-lcosθ is loss of height . we have applied law of conservation of mechanical energy .]
.5 ( ω l )² = gl( 1 - cos θ )
.5 ω² l = g ( 1 - cosθ )
1 - cosθ = .5 ω² l /g
cosθ = 1 - .5 ω² l /g
θ can be calculated , if value of l is given .
Answer:
50 J
Explanation:
The net force acting on the box is given by the algebraic sum of the two forces, so:

The net work done on the box is equal to (assuming the net force is parallel to the displacement of the object)

where
F = 5 N is the net force on the object
d = 10 m is the displacement of the object
Substituting,

Answer:
Specific heat capacity is an intensive property and does not depend on sample size.
Explanation:
Answer:within the focal length of the lens, provided the focal length is shorter than the near point distance.
Explanation:Hope it helps