If I remember correctly, you would have to heat the reaction beaker over a burner..
I apologize if I'm wrong
A molecule that can h-bond will not always necessarily and does not have guarantee to have a higher boiling point than one than cannot have h-bond.
we can take an example of Pentan-2-one that cannot h-bond but instead of this it has a high boiling point that is 102.3 °C, while propan-1-ol can h-bond but it has a boiling point of 97.2°C, that is lower than the boiling point of Pentan-2-one.
yes
Explanation:
the volume also decrease. as particles are removed from the space the gas is in, there is a decrease in the number of collisions.
Hey there!
For SN1 mechanism; the activation barrier is the C-I bond energy which is broken in the first step of the reaction.
The activation barrier is : 56 kcal/ mol = 5.6 kcal/ mole ( nearest 0.1)
For Less number of oxygen atoms will be less acidic. Therefore, the rank will be.... So there is 1 oxygen atom bonded to each of the 2 nitrogen atoms.
For HNO3 or {HONO}2. So there are 3 oxygen atoms bonded to the nitrogen.
For HNO2 or HONO. So there are 2 oxygen atoms bonded to the nitrogen.
Less number of oxygen atoms will be less acidic. Therefore, the rank will be...
HNO3>HNO2>H2N2O2
Acid strength is the tendency of an acid, symbolized by the chemical formula, to dissociate into a proton, and an anion, The dissociation of a strong acid in solution is effectively complete, except in its most concentrated solutions.
The strength of a weak organic acid may depend on substituent effects. The strength of an inorganic acid depends on the atom’s oxidation state to which the proton may be attached. Acid strength is solvent-dependent. For example, hydrogen chloride is a strong acid in an aqueous solution but is a weak acid when dissolved in glacial acetic acid.
Learn more about Acid strength here:
brainly.com/question/3223615
#SPJ4