So I’m not 100% sure what you’re asking but I’m going to give it a go. The elimination reaction is a term used in organic chemistry that describes a type of reactions. The name kinda tells you what’s going to happen. Something is going to be removed/eliminated from initial reactant/substrate and as a result, an alkene (double bond containing compound) will form.
In elimination reactions a hydrogen atom is first removed (as a H+) from the beta carbon. As a result, the left behind electrons create a pi bond between the beta carbon and the neighboring alpha carbon. This promotes the electronegative atom, on the alpha carbon, to leaves the substrate taking both electrons from the shared sigma bond with the alpha carbon.
If we convert the ounces to grams, there are approximately 283.495 grams of plant fertiliser
If nitrogen has 15% of this, all we have to do is divide this number by 100 to get the mass of 1% and multiply it by 15.
In the end, we end up with the mass of 42.5243 g
Hope I helped! xx
Answer:
Partial pressure SO₂ → 0.440 atm
Explanation:
We apply the mole fraction concept to solve this:
Moles of gas / Total moles = Partial pressure of the gas / Total pressure
Total moles = 0.3 moles of CO₂ + 0.2706 moles of SO₂ + 0.35 moles H₂O
Total moles = 0.9206 moles
Mole fraction SO₂ = 0.2706 moles / 0.9206 moles → 0.29
Now, we can know the partial pressure:
0.29 = Partial pressure SO₂ / Total pressure
0.29 = Partial pressure SO₂ / 1.5 atm
0.29 . 1.5atm = Partial pressure SO₂ → 0.440 atm
Answer:
<em>Chemical</em><em> </em><em>change</em><em>.</em>
<em> </em><em> </em>
<em>Hope</em><em> </em><em>this</em><em> </em><em>helps</em><em> </em><em>you</em><em>.</em>
Answer:
PH= 2.54
Explanation:
Because the procedure involves many steps for its resolution and it works faster on paper and pencil, the detailed solution of this exercise is attached as a scanned image of the procedure for review.
In the procedure, the initial values of the problem and the replacement of these values with the correct formulas for this process are taken into account.