Hey there!
To find the density of an object, you must use this formula:
Density=Mass/Volume
Knowing that your mass is 128.3741, the only information you need left would be to find the volume of the cube.
Because the side length of the cube is given, you can multiply the length three times in order to find its volume:
1.25*1.25*1.25
=1.953125
Now that you have your volume and mass, divide the mass by the volume to find the density:
128.3741/1.953125
=65.7275392
Therefore, your density would be 65.7275392 grams per inches cubed.
Answer:
Bowling Ball
Explanation:
The bowling ball has the highest gravitational potential energy because the height at which it will fall is the highest of the rest objects on the table.
The half life for C14 is 5730 years.
We assume that Carbon 14/ Carbon 12 ratio was steady for living organisms over time, the problem is actually telling us that

= 0.0725 =

ˣ
Take the natural logarithm and In on both sides.
ln(0.725) = ln

ˣ
= - 0.3216 = xln (

= -0.6931x.
So x = (-.3216) / (-0.6931) = 0.464
or
t/t₁/₂ = 0.464
So t = 0.464 x t₁/₂ = 0.464 * 5730 yrs = 2660 years.
Answer:
The answer to your question is 7.4 moles of Aluminum
Explanation:
Data
moles of Al = ?
moles of Al₂O₃ = 3.7
Balanced chemical reaction
4 Al + 3 O₂ ⇒ 2 Al₂O₃
To solve this problem use proportions and cross multiplication. Use the coefficients of the balanced chemical equation.
4 moles of Aluminum ----------------- 2 moles of Al₂O₃
x ----------------- 3.7 moles of Al₂O₃
x = (3.7 x 4) / 2
x = 14.8 / 2
x = 7.4 moles of Aluminum
Answer:
b)4.46 L/hr
Explanation:
To solve this question we need to convert the mL to liters (Using the conversion of 1000mL = 1L) and convert the time from seconds to hours (3600s = 1hr)
<em>mL to L:</em>
1.24mL/s * (1L / 1000mL) = 0.00124L/s
<em>seconds to hours:</em>
0.00124L/s * (3600s / 1hr) = 4.46L/hr
Right answer is:
<h3>b)4.46 L/hr
</h3>