33.11 trillion kilometers is equivalent to 3.5 light years
hope this helps :)<span />
Kinetic energy of an object is directly connected to the speed object. Like a toy car being used on a table, the toy car will speed up which means the kinetic energy of that toy car will also increase
Answer:
0.558mole of SO₃
Explanation:
Given parameters:
Molar mass of SO₃ = 80.0632g/mol
Mass of S = 17.9g
Molar mass of S = 32.065g/mol
Number of moles of O₂ = 0.157mole
Molar mass of O₂ = 31.9988g/mol
Unknown:
Maximum amount of SO₃
Solution
We need to write the proper reaction equation.
2S + 3O₂ → 2SO₃
We should bear in mind that the extent of this reaction relies on the reactant that is in short supply i.e limiting reagent. Here the limiting reagent is the Sulfur, S. The oxygen gas would be in excess since it is readily availbale.
So we simply compare the molar relationship between sulfur and product formed to solve the problem:
First, find the number of moles of Sulfur, S:
Number of moles of S = 
Number of moles of S =
= 0.558mole
Now to find the maximum amount of SO₃ formed, compare the moles of reactant to the product:
2 mole of Sulfur produced 2 mole of SO₃
Therefore; 0.558mole of sulfur will produce 0.558mole of SO₃
Animals contribute water mainly through breathing, perspiration and urination. ... When droplets of sweat evaporate from the surface of an animal's skin, they take a bit of the animal's body heat with them. They also turn into water vapor and enter the water cycle, just like water evaporating from plant leaves.
The melting point of potassium = 
Melting point of titanium = 
Titanium has a stronger metallic bonding compared to potassium. Titanium being a transition metal has greater number of valence electrons (4 valence electrons) contributing to the valence electron sea compared to potassium which has only one valence electron. The atomic size of Titanium much lower than that of potassium, so the bonding between Titanium atoms is stronger than that of potassium. Hence, the melting point of Titanium is much higher than that of potassium.