Answer:
A)
.
B)
.
C) 0.9 mol.
D) Increasing both temperature and pressure.
Explanation:
Hello,
In this case, given the information, we proceed as follows:
A)

B) For the calculation of Kc, we rate the equilibrium expression:
![Kc=\frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
Next, since at equilibrium the concentration of ammonia is 0.6 M (0.9 mol in 1.5 dm³ or L), in terms of the reaction extent
, we have:
![[NH_3]=0.6M=2*x](https://tex.z-dn.net/?f=%5BNH_3%5D%3D0.6M%3D2%2Ax)

Next, the concentrations of nitrogen and hydrogen at equilibrium are:
![[N_2]=\frac{1.5mol}{1.5L}-x=1M-0.3M=0.7M](https://tex.z-dn.net/?f=%5BN_2%5D%3D%5Cfrac%7B1.5mol%7D%7B1.5L%7D-x%3D1M-0.3M%3D0.7M)
![[H_2]=\frac{4mol}{1.5L}-3*x=2.67M-0.9M=1.77M](https://tex.z-dn.net/?f=%5BH_2%5D%3D%5Cfrac%7B4mol%7D%7B1.5L%7D-3%2Ax%3D2.67M-0.9M%3D1.77M)
Therefore, the equilibrium constant is:

C) In this case, the equilibrium yield of ammonia is clearly 0.9 mol since is the yielded amount once equilibrium is established.
D) Here, since the reaction is endothermic (positive enthalpy change), one way to increase the yield of ammonia is increasing the temperature since heat is reactant for endothermic reactions. Moreover, since this reaction has less moles at the products, another way to increase the yield is increasing the pressure since when pressure is increased the side with fewer moles is favored.
Best regards.
The type of reaction of Fe2O3 + 2SiO2 → Fe2Si2O7 would be that it is a synthesis reaction. It is a type of chemical reaction in which two or more simple substances combine to form a more complex product. Hope this answers the question.
Answer:
The Yerkes-Dodson Law suggests that there is a relationship between performance and arousal. Increased arousal can help improve performance, but only up to a certain point.
Explanation:
Explanation: energy levels are three(counting number of cyecles) outer electrons are 3 also
Answer:3,3
The answer is 28.02.
The chemical formula for cadmium nitrate is Cd(NO₃)₂.
There are in total 2 nitrogen atoms in Cd(NO₃)₂. If <span>the atomic weight of nitrogen is 14.01</span>, the mass <span>of two nitrogen atoms in one mole of cadmium nitrate is 28.02:
2 </span>· 14.01 = 28.02