- b
- d
- e
- a
- c
- f
7.g
well there is your answers
Answer:

Explanation:
Hello,
In this case, by knowing the given reference reactions, one could rearrange them as follows:


Subsequently, to obtain the main reaction, we add the aforementioned reference rearranged reactions as shown below (just as reference):

Consequently, the equilibrium constant is computed as:
![Kp=\frac{[N_2][O_2]}{[NO]^2} * \frac{[NO_2]^2}{[N_2][O_2]^2} =Kp_2*Kp_3=4.35x10^{18}*7.056x10^{-13}=3.07x10^6](https://tex.z-dn.net/?f=Kp%3D%5Cfrac%7B%5BN_2%5D%5BO_2%5D%7D%7B%5BNO%5D%5E2%7D%20%2A%20%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2%5D%5BO_2%5D%5E2%7D%20%3DKp_2%2AKp_3%3D4.35x10%5E%7B18%7D%2A7.056x10%5E%7B-13%7D%3D3.07x10%5E6)
Best regards.
Answer:
Decomposers (either Secondary Consumer or Tertiary Consumer)
Explanation:
Decomposers eat dead materials and break them down into chemical parts. ... They keep the ecosystem free of the bodies of dead animals or carrion. They break down the organic material and recycle it into the ecosystem as nutrients. Vultures, Blowflies, hyenas, crabs, lobsters and eels are examples of scavengers.
A molecule of hydrogen is formed by two hydrogen atoms, that is a fact.
How does it work? When two atoms, known as "diatomic" pair with another in a bond known non-polar covalent bonds. Where they equally share electrons. A Hydrogen atoms needs 1 more electrons to fill its first shell fully and have a full valence shell. So if two H's share their electrons, they'll both have a full V-Shell!
That's the basics of both the H-H bond and all the other diatomic bonds as well.
Solubility and temperatures are directly related. The higher the temperature of the solvent, the higher the solubility of the solute in the solvent.
Dissolving a solute in a solvent is an endothermic process hence providing heat favors the process. Higher temperatures cause the molecules of the solvent to have high kinetic energy hence bombard each other and with that of the solute with high frequency. This then ensures fast diffusion of the solute particles in the solvent.