Answer:
The options are not shown, so let's derive the relationship.
For an object that is at a height H above the ground, and is not moving, the potential energy will be:
U = m*g*H
where m is the mass of the object, and g is the gravitational acceleration.
Now, the kinetic energy of an object can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Now, when we drop the object, the potential energy begins to transform into kinetic energy, and by the conservation of the energy, by the moment that H is equal to zero (So the potential energy is zero) all the initial potential energy must now be converted into kinetic energy.
Uinitial = Kfinal.
m*g*H = (1/2)*m*v^2
v^2 = 2*g*H
v = √(2*g*H)
So we expressed the final velocity (the velocity at which the object impacts the ground) in terms of the height, H.
Answer:
A) 5.2 x 10³ N
B) 8.8 x 10³ N
Explanation:
Part A)
= weight of the craft in downward direction = tension force in the cable when stationary = 7000 N
= Tension force in upward direction
= Drag force in upward direction = 1800 N
Force equation for the motion of craft is given as
-
-
= 0
7000 - 1800 -
= 0
= 5200 N
= 5.2 x 10³ N
Part B)
= weight of the craft in downward direction = tension force in the cable when stationary = 7000 N
= Tension force in upward direction
= Drag force in downward direction = 1800 N
Force equation for the motion of craft is given as
-
-
= 0
- 7000 - 1800 = 0
= 8800 N
= 8.8 x 10³ N
Answer:
Alveoli
The bronchioles end in tiny air sacs called alveoli, where oxygen is transferred from the inhaled air to the blood.
Hope this helps :)
Answer:By turning the electrical current off
Explanation:Trust me I took the test
Answer:
400000
Explanation:
So first solve one part:
(3.25 * 10^5)
(3.25 * 100,000)
= 325000
Then solve the next part:
(7.5 * 10^4)
(7.5 * 10000)
= 75000
Now lastly, add the two answers:
325000 + 75000 = 400000
Therefore,
(3.25 x 10^5) + (7.5 x 10^4) = 400000