1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kamila [148]
2 years ago
14

The gain of electrons by an element or ion in a reaction is called __.

Chemistry
1 answer:
dsp732 years ago
5 0

Answer:

Reduction

Explanation:

took the test

You might be interested in
Explain the part that the subduction zones play in the cycling of matter between Earth’s crust and mantle.
WARRIOR [948]

Explanation:

The earth’s crust is broken into separate pieces called tectonic plates (Fig. 7.14). Recall that the crust is the solid, rocky, outer shell of the planet. It is composed of two distinctly different types of material: the less-dense continental crust and the more-dense oceanic crust. Both types of crust rest atop solid, upper mantle material. The upper mantle, in turn, floats on a denser layer of lower mantle that is much like thick molten tar.

Each tectonic plate is free-floating and can move independently. Earthquakes and volcanoes are the direct result of the movement of tectonic plates at fault lines. The term fault is used to describe the boundary between tectonic plates. Most of the earthquakes and volcanoes around the Pacific ocean basin—a pattern known as the “ring of fire”—are due to the movement of tectonic plates in this region. Other observable results of short-term plate movement include the gradual widening of the Great Rift lakes in eastern Africa and the rising of the Himalayan Mountain range. The motion of plates can be described in four general patterns:

<p><strong>Fig 7.15.</strong> Diagram of the motion of plates</p>

Collision: when two continental plates are shoved together

Subduction: when one plate plunges beneath another (Fig. 7.15)

Spreading: when two plates are pushed apart (Fig. 7.15)

Transform faulting: when two plates slide past each other (Fig. 7.15)

The rise of the Himalayan Mountain range is due to an ongoing collision of the Indian plate with the Eurasian plate. Earthquakes in California are due to transform fault motion.

Geologists have hypothesized that the movement of tectonic plates is related to convection currents in the earth’s mantle. Convection currents describe the rising, spread, and sinking of gas, liquid, or molten material caused by the application of heat. An example of convection current is shown in Fig. 7.16. Inside a beaker, hot water rises at the point where heat is applied. The hot water moves to the surface, then spreads out and cools. Cooler water sinks to the bottom.

<p><strong>Fig. 7.16.</strong> In this diagram of convection currents in a beaker of liquid, the red arrows represent liquid that is heated by the flame and rises to the surface. At the surface, the liquid cools, and sinks back down (blue arrows).</p><br />

Earth’s solid crust acts as a heat insulator for the hot interior of the planet. Magma is the molten rock below the crust, in the mantle. Tremendous heat and pressure within the earth cause the hot magma to flow in convection currents. These currents cause the movement of the tectonic plates that make up the earth’s crust.

8 0
3 years ago
What is the unknown metal if the temperature of a beaker of 100ml of water was raised 17c to 19 c when 21 grams of the metal at
horrorfan [7]

Answer:

The metal has a heat capacity of 0.385 J/g°C

This metal is copper.

Explanation:

<u>Step 1</u>: Data given

Mass of the metal = 21 grams

Volume of water = 100 mL

 ⇒ mass of water = density * volume = 1g/mL * 100 mL = 100 grams

Initial temperature of metal = 122.5 °C

Initial temperature of water = 17°C

Final temperature of water and the metal = 19 °C

Heat capacity of water = 4.184 J/g°C

<u />

<u>Step 2: </u>Calculate the specific heat capacity

Heat lost by the metal = heat won by water

Qmetal = -Qwater

Q = m*c*ΔT

m(metal) * c(metal) * ΔT(metal) = - m(water) * c(water) * ΔT(water)

21 grams * c(metal) *(19-122.5) = -100 * 4.184 * (19-17)

-2173.5 *c(metal) = -836.8

c(metal) = 0.385 J/g°C

The metal has a heat capacity of 0.385 J/g°C

This metal is copper.

4 0
4 years ago
Indicate how you might prepare acetic acid from ethene
ruslelena [56]
Acetic acid can be prepared from ethane by oxidizing it. Acetic acid is generally a carboxylic acid. These acids can be made by the oxidation of alcohols using potassium dichromate(VI) solution with sulfuric acid. Ethane is made into acetic acid in two steps. First it is formed into an aldehyde and then to acetic acid.
8 0
3 years ago
Why are koalas so crusty?
marishachu [46]
Koalas are not crusty, but their fur is very coarse, like wool.
Hope this helps.
6 0
4 years ago
Read 2 more answers
Which aqueous solution has the highest boiling point at standard pressure?(1) 1.0 M KC1(aq) (3) 2.0 M KCl(aq)(2) 1.0 M CaC12(aq)
miss Akunina [59]

Answer:

(4) 2.0 M CaCl₂(aq).

Explanation:

  • Adding solute to water elevates the boiling point.
  • The elevation in boiling point (ΔTb) can be calculated using the relation:

<em>ΔTb = i.Kb.m,</em>

where, ΔTb is the elevation in boiling point.

i is the van 't Hoff factor.

  • van 't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass. For most non-electrolytes dissolved in water, the van 't Hoff factor is essentially 1.

Kb is the molal elevation constant of water.

m is the molality of the solution.

<u><em>(1) 1.0 M KCl(aq):</em></u>

i for KCl = no. of particles produced when the substance is dissolved/no. of original particle = 2/1 = 2.

suppose molarity = molality, m = 1.0 m,

∴ ΔTb for (1.0 M KCl) = i.Kb.m = (2)(Kb)(1.0 m) = 2(Kb).

<u><em>(2) 2.0 M KCl(aq):</em></u>

i for KCl = no. of particles produced when the substance is dissolved/no. of original particle = 2/1 = 2.

suppose molarity = molality, m = 2.0 m,

∴ ΔTb for (1.0 M KCl) = i.Kb.m = (2)(Kb)(2.0 m) = 4(Kb).

<u><em>(3) 1.0 M CaCl₂(aq):</em></u>

i for CaCl₂ = no. of particles produced when the substance is dissolved/no. of original particle = 3/1 = 3.

suppose molarity = molality, m = 1.0 m,

∴ ΔTb for (1.0 M KCl) = i.Kb.m = (3)(Kb)(1.0 m) = 3(Kb).

<u><em>(4) 2.0 M CaCl₂(aq):</em></u>

i for CaCl₂ = no. of particles produced when the substance is dissolved/no. of original particle = 3/1 = 3.

suppose molarity = molality, m = 2.0 m,

∴ ΔTb for (1.0 M KCl) = i.Kb.m = (3)(Kb)(2.0 m) = 6(Kb).

  • <em>So, the aqueous solution has the highest boiling point at standard pressure is: (4) 2.0 M CaCl₂(aq).</em>

<em></em>

6 0
3 years ago
Other questions:
  • What did Dalton determine about the relationship between atoms, elements, and compounds?
    14·2 answers
  • Which scenario would cause a covalent bond to form?
    6·1 answer
  • The main purpose of Buddhism is
    6·1 answer
  • Refer to the illustration above. Which time period shows exponential growth of the population
    14·1 answer
  • Explain why you can boil water in a pot without the pot also boiling
    15·1 answer
  • PLEASEEEE I NEED HELPP
    14·1 answer
  • Please help!!
    8·1 answer
  • Another chemistry question i’m not good at this at all:( has me stressed
    13·1 answer
  • PLZ HELP
    5·1 answer
  • Write a balanced half-reaction for the reduction of bismuth oxide ion to bismuth ion in basic aqueous solution. Be sure to add p
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!