Answer:
The sum of each elementary step in a reaction mechanism must yield the overall reaction equation. From the rate law of the rate-determining step it must agree with the experimentally determined rate law. The rate-determining step is the slowest step in a reaction mechanism. Because it is the slowest, it determines the rate of the overall reaction.
Explanation:
Answer:
Actual yield = 86.5g
Explanation:
Percent yield = 82.38%
Theoretical yield = 105g
Actual yield = x
Equation of reaction,
CaCO₃ + HCl → CaCl₂ + CO₂ + H₂O
Percentage yield = (actual yield / theoretical yield) * 100
82.38% = actual yield / theoretical yield
82.38 / 100 = x / 105
Cross multiply and make x the subject of formula
X = (105 * 82.38) / 100
X = 86.499g
X = 86.5g
Actual yield of CaCl₂ is 86.5g
Answer:
The answer to your question is below
Explanation:
There are 4 types of chemical reactions:
- Synthesis is when two elements or compounds form only one compound.
- Decomposition is when 1 compound is broken into 2 or more products.
- Single replacement is when one element is replaced by another element.
- Double replacement is when the cations of two compounds are interchanged.
1.- Decomposition 2 Al₂O₃ ⇒ 4 Al + 3O₂
2.- Single replacement Mg + 2HNO₃ ⇒ Mg(NO₃)₂ + H₂
3.- Combustion 2C₆H₆ + 15O₂ ⇒ 12CO₂ + 6H₂O
4.- Synthesis 2Ag + S ⇒ Ag₂S
5.- Double replacement 3Ca(OH)₂ + 2H₃PO₄ ⇒ Ca₃(PO₄)₂ + 6 H₂O
Answer:
Lmol⁻¹s⁻¹
Explanation:
The rate law of the given reaction is:-
Rate=k[A][B]
Wherem, k is the rate constant.
Given that:-
Rate = 0.36 mol/Lsec = 0.36 M/sec
[A] = 3.0 M
[B] = 1.0 M
Thus,
Applying in the equation as:-
0.36 M/sec =k × 3.0 M× 1.0 M
k = 0.12 (Ms)⁻¹ = 0.12 Lmol⁻¹s⁻¹
<u>The units of k = Lmol⁻¹s⁻¹</u>