the answer is bond energy but I am not pretty sure
Impulse is caused by a force during a specific time that is equal to the body's change of momentum
Impulsive force: the process of minimizing an impact force can be approched
Answer:21.45 m/s
Explanation:
Given
Mass of sport car=920 kg
Mass of SUV=2300 kg
distance to which both car skid is 2.4 m
coefficient of friction (
)=0.8
Let u be the initial velocity of both car at the starting of skidding
and they finally come to zero velocity


s=2.4 m

u=6.13 m/s
so before colliding sport car must be travelling at a speed of
(conserving momentum)
v=21.45 m/s
The period of the wave is 4.35 ms. The sound waves are called longitudinal waves
Explanation:
The period of a wave is related to its frequency by the equation:

where
T is the period
f is the frequency
For the bee in this problem, the frequency of the sound wave emitted by it is

Therefore, the period of the sound wave is

The sound wave is a type of wave called longitudinal wave. In longitudinal waves, the oscillation of the medium occurs in a direction parallel to the direction of motion of the wave: therefore in a sound wave, the particle of the medium (air, in this case) oscillate back and forth along the direction of propagation of the wave, forming alternating areas of higher density of particles (called compressions) and of lower density of particle (called rarefactions).
The other type of wave, instead, is called transverse wave. In a transverse wave, the oscillation of the wave occurs in a direction perpendicular to the direction of motion of the wave. An example of transverse waves are the electromagnetic waves, which consists of electric field and magnetic fields that vibrate in a plane perpendicular to the direction of motion of the wave itself.
Learn more about waves:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly
components of the speed of the coin is given as




now the time taken by the coin to reach the plate is given by



now in order to find the height



so it is placed at 1.52 m height