Answer:
d. Hydrophobic molecules are attracted to each other.
Explanation:
The term “hydrophobic effect” is associated with the spontaneous tendency of macromolecules, such as proteins, to prefer a conformation in an aqueous medium, with hydrophobic groups facing the interior of the mac romolecule, favoring attractive intramolecular interactions, and hydrophilic groups exposed on the surface, for maximize interactions with water molecules in the medium. This is because the hydrophobic molecules are attracted to each other, allowing them to turn inward.
Answer:
See explanation
Explanation:
The shorthand nuclear reaction equations have been given; the first particle in the parentheses is a reactant particle while the second particle is a product particle. These can now be rewritten as the longhand equations as follows;
238/92U + 4/2 He -------> 241/94Pu + 1/0 n
238/92U + 4/2 He ------> 241/94Pu + 1/0 n
14/7N + 4/2 He------> 17/8O + 1/1 p
56/26Fe + 2 4/2 He----> 60/29Cu + 4/2 He
Answer:
D. Solutions are formed when the water’s polar molecules separate the polar molecules of an ionic or molecular compound.
Explanation:
Solutions are homogeneous mixtures formed by interaction between solutes and solvents.
Water based solutions have water as the solvents and mostly ionic and molecular compounds as their solutes.
Water is a polar solvent that is capable of dissolving many compounds by hydrating them. The molecules of water surrounds the solute and forces them to separate.
The electron-group arrangement of CO₃²⁻ is trigonal planar. The molecular shape is trigonal planar, and the ideal bond angle(s) is CO₃²⁻ is 120°
<h3>What is the molecular geometry of a compound?</h3>
The position of the compound's electrons and nuclei can be seen in the molecular geometry. It demonstrates how the form of the complex is created by the interaction of electrons and nuclei.
Here, according to the VSEPR theory, the shape of the carbonate ion is trigonal planar. The carbon will be in the center.
Thus, the electron-group arrangement and the shape of the carbonate ion are trigonal planar. The bond angle will be 120°.
To learn more about molecular geometry, refer to the link:
brainly.com/question/16178099
#SPJ4