Answer:
Initial concentration of HI is 5 mol/L.
The concentration of HI after
is 0.00345 mol/L.
Explanation:

Rate Law: ![k[HI]^2 ](https://tex.z-dn.net/?f=k%5BHI%5D%5E2%0A)
Rate constant of the reaction = k = 
Order of the reaction = 2
Initial rate of reaction = 
Initial concentration of HI =![[A_o]](https://tex.z-dn.net/?f=%5BA_o%5D)
![1.6\times 10^{-7} mol/L s=(6.4\times 10^{-9} L/mol s)[HI]^2](https://tex.z-dn.net/?f=1.6%5Ctimes%2010%5E%7B-7%7D%20mol%2FL%20s%3D%286.4%5Ctimes%2010%5E%7B-9%7D%20L%2Fmol%20s%29%5BHI%5D%5E2)
![[A_o]=5 mol/L](https://tex.z-dn.net/?f=%5BA_o%5D%3D5%20mol%2FL)
Final concentration of HI after t = [A]
t = 
Integrated rate law for second order kinetics is given by:
![\frac{1}{[A]}=kt+\frac{1}{[A_o]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%3Dkt%2B%5Cfrac%7B1%7D%7B%5BA_o%5D%7D)
![\frac{1}{[A]}=6.4\times 10^{-9} L/mol s\times 4.53\times 10^{10} s+\frac{1}{[5 mol/L]}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5BA%5D%7D%3D6.4%5Ctimes%2010%5E%7B-9%7D%20L%2Fmol%20s%5Ctimes%204.53%5Ctimes%2010%5E%7B10%7D%20s%2B%5Cfrac%7B1%7D%7B%5B5%20mol%2FL%5D%7D)
![[A]=0.00345 mol/L](https://tex.z-dn.net/?f=%5BA%5D%3D0.00345%20mol%2FL)
The concentration of HI after
is 0.00345 mol/L.
Answer:
1.05 V
Explanation:
Since;
E°cell= E°cathode- E°anode
E°cathode= -0.40 V
E°anode= -1.45 V
E°cell= -0.40-(-1.45) = 1.05 V
Equation of the process;
2Zr(s) + 4Cd^2+(aq) ---->2Zr^4+(aq) + 4Cd(s)
n= 8 electrons transferred
From Nernst's equation;
Ecell = E°cell - 0.0592/n log Q
Ecell= E°cell - 0.0592/8 log [0.5]/[0.5]
Since log 1=0
Ecell= E°cell= 1.05 V
Answer:
- Aldehydes
- A hydrogen atom
- Oxygen
Explanation:
Many tests to distinguish aldehydes and ketones involve the addition of an oxidant. Only <u>aldehydes</u> can be easily oxidized because there is<u> a hydrogen atom</u> next to the carbonyl and oxidation does not require<u> oxygen </u>
What two substances are always produced by a neutralization reaction? water and salt