Answer:
B . Changing the material that the fluids container is made of
Explanation:
Changing the material of the container does not affect the pressure in a container whereas increasing the volume, changing the weight of the fluid, and heating/cooling the fluid will all change the pressure.
Answer:
The final volume when pressure is changed is 126.1mL
Explanation:
Based on Boyle's law, in a gas the volume is inversely proportional to its pressure when temperature remains constant. The equation is:
P₁V₁ = P₂V₂
<em>Where P is pressure and V volume of 1, intial state and 2, final state.</em>
<em />
Computing the values of the problem:
350mmHg*200mL = 555mmHgV₂
126.1mmHg = V₂
<h3>The final volume when pressure is changed is 126.1mL</h3>
Answer:
Conservation of mass can be checked in an experiment . There are three steps to do it in a best way:
1. Weigh all the equipment and materials required in the experiment before the experiment.
2. Avoid spillage and evaporation during the experiment.
3. Weigh all the equipment and materials after the experiment.
If the mass is conserved then weight from step 1 is equal to weight from step
The key to most "how do I separate." questions is solubility.
The trick is to add a liquid that will only dissolve one substance but not another.
Let's say you had a beaker full of sand, table salt (NaCl), and acetanilide. Is there anything you can add that would only dissolve one of these three substances?
Yes, there is! Acetanilide like most organic compounds, isn't soluble in water. But salt is soluble in water. So to the mixture, I would add water, and then pass the water through a filter. The filter paper will "catch" the sand and acetanilide, but the table salt will remain dissolved in the water. If you then let that water evaporate (either via boiling or under vacuum), you will recover your salt.
So now, how to do you separate the sand from the acetanilide? Sand isn't really soluble in anything, but acetanilide is soluble in organic solvents, such as ethanol. So to the mixture of sand and acetanilide, add ethanol, and pass it through a filter. The sand will once again get stuck in the filter paper, and your acetanilide will be dissolved in ethanol. Remove the ethanol (via vacuum, or rotovap) and you will be left with acetanilide.
Answer:
according to me my ans is P-100 respirator with organic vapor absorbing cartridges