Answer:
Rosalind Elsie Franklin (25 July 1920 – 16 April 1958)was a British biophysicist and X-ray crystallographer who made critical contributions to the understanding of the fine molecular structures of DNA, RNA, viruses, coal and graphite. The DNA work achieved the most fame because DNA (deoxyribonucleic acid) plays essential roles in cell metabolism and genetics, and the discovery of its structure helped scientists understand how genetic information is passed from parents to children.
rosalindfranklin
Franklin is best known for her work on the X-ray diffraction images of DNA which led to discovery of DNA double helix. Her data, according to Francis Crick, was "the data we actually used" to formulate Crick and Watson's 1953 hypothesis regarding the structure of DNA.Franklin's X-ray diffraction image confirming the helical structure of DNA were shown to Watson without her approval or knowledge. Though this image and her accurate interpretation of the data provided valuable insight into the DNA structure, Franklin's scientific contributions to the discovery of the double helix are often overlooked. Unpublished drafts of her papers (written just as she was arranging to leave King's College London) show that she had independently determined the overall B-form of the DNA helix and the location of the phosphate groups on the outside of the structure. However, her work was published third, in the series of three DNA Nature articles, led by the paper of Watson and Crick which only hinted at her contribution to their hypothesis.
After finishing her portion of the DNA work, Franklin led pioneering work on the tobacco mosaic and polio viruses. She died in 1958 at the age of 37 from complications arising from ovarian cancer.
The pH of the solution is 2.54.
Explanation:
pH is the measure of acidity of the solution and Ka is the dissociation constant. Dissociation constant is the measure of concentration of hydrogen ion donated to the solution.
The solution of C₆H₂O₆ will get dissociated as C₆HO₆ and H+ ions. So the molar concentration of 0.1 M is present at the initial stage. Lets consider that the concentration of hydrogen ion released as x and the same amount of the base ion will also be released.
So the dissociation constant Kₐ can be written as the ratio of concentration of products to the concentration of reactants. As the concentration of reactants is given as 0.1 M and the concentration of products is considered as x for both hydrogen and base ion. Then the
![K_{a}=\frac{[H^{+}][HB] }{[reactant]}](https://tex.z-dn.net/?f=K_%7Ba%7D%3D%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5BHB%5D%20%7D%7B%5Breactant%5D%7D)
[HB] is the concentration of base.


Then
![pH = - log [x] = - log [ 0.283 * 10^{-2}]\\ \\pH = 2 + 0.548 = 2.54](https://tex.z-dn.net/?f=pH%20%3D%20-%20log%20%5Bx%5D%20%3D%20-%20log%20%5B%200.283%20%2A%2010%5E%7B-2%7D%5D%5C%5C%20%5C%5CpH%20%3D%202%20%2B%200.548%20%3D%202.54)
So the pH of the solution is 2.54.
Answer:
The equation for molarity is moles/liter for the first question you would do 0.256/0.143 liters to get 1.790 mol/L
Explanation:
The second problem you would do need to find the moles of NaCl which you would do by doing 4.89 g/58.44g/mol= 0.08367 then do 0.08367/0.600= 0.139 mol/L
The third problem would be the same steps as the second one.
The fourth problem would be (0.460M)(5.50L)= 2.53 moles
Answer:
the answer is 0 amu I hope it helps
It’s a 50 50 chance unless one parent has a dominate gene