Explanation:
Hydrocarbon shows nonpolar
Higher concentration of reactants equals faster rate of reaction. Reactions occur when particles collide effectively, and by increasing the concentration of reactants, you increase the number of effective collisions, thereby making the reaction occur faster.
PH is defined as the negative log of Hydronium Ion concentration.
So, in order to find the pH of vinegar, we find the negative log of its hydronium ion concentration.
![pH=-log[ H_{3}O^{+}] \\ \\ pH=-log(1.6 * 10^{-3}) \\ \\ pH=2.8](https://tex.z-dn.net/?f=pH%3D-log%5B%20H_%7B3%7DO%5E%7B%2B%7D%5D%20%5C%5C%20%20%5C%5C%20%0ApH%3D-log%281.6%20%20%2A%2010%5E%7B-3%7D%29%20%20%5C%5C%20%20%5C%5C%20%0ApH%3D2.8)
So, the pH of given vinegar solution will be 2.8.
Therefore, the answer to this question is option B
Answer:
Final molarity of iodide ion C(I-) = 0.0143M
Explanation:
n = (m(FeI(2)))/(M(FeI(2))
Molar mass of FeI(3) = 55.85+(127 x 2) = 309.85g/mol
So n = 0.981/309.85 = 0.0031 mol
V(solution) = 150mL = 0.15L
C(AgNO3) = 35mM = 0.035M = 0.035m/L
n(AgNO3) = C(AgNO3) x V(solution)
= 0.035 x 0.15 = 0.00525 mol
(AgNO3) + FeI(3) = AgI(3) + FeNO3
So, n(FeI(3)) excess = 0.00525 - 0.0031 = 0.00215mol
C(I-) = C(FeI(3)) = [n(FeI(3)) excess]/ [V(solution)] = 0.00215/0.15 = 0.0143mol/L or 0.0143M