Answer:
Explanation:
<u>1. Equilibrium equation</u>
<u>2. Equilibrium constant</u>
The liquid substances do not appear in the expression of the equilibrium constant.
![k_c=\dfrac{[HBr(g)]^2}{[H_2]}=4.8\times 10^8M](https://tex.z-dn.net/?f=k_c%3D%5Cdfrac%7B%5BHBr%28g%29%5D%5E2%7D%7B%5BH_2%5D%7D%3D4.8%5Ctimes%2010%5E8M)
<u>3. ICE table.</u>
Write the initial, change, equilibrium table:
Molar concentrations:
H₂(g) + Br₂(l) ⇄ 2HBr(g)
I 0.400 0
C - x +2x
E 0.400 - x 2x
<u>4. Substitute into the expression of the equilibrium constant</u>

<u>5. Solve the quadratic equation</u>
- 192,000,000 - 480,000,000x = 4x²
- x² + 120,000,000x - 48,000,000 = 0
Use the quadratic formula:

The only valid solution is x = 0.39999999851M
Thus, the final concentration of H₂(g) is 0.400 - 0.39999999851 ≈ 0.00000000149 ≈ 1.5 × 10⁻⁹M
First, let's state the chemical reaction:

We can find the number of moles of Cl2 required to produce 0.0923 moles of AlCl3, doing a rule of three: 3 moles of Cl2 reacted produces 2 moles of AlCl3:

The calculation would be:

And the final step is to convert this number of moles to grams. Remember that the molar mass can be calculated using the periodic table, so the molar mass of Cl2 is 70.8 g/mol, and the conversion is:

The answer is that we need 9.770 grams of Cl2 to produce 0.0923 moles of AlCl3.
Answer:
Benedict's reagent is the indicator we use to detect monosaccharides. When monosaccharides are mixed with Benedict's and heated, a color ange occurs.
Hope this helps!! :)
Answer:
B) The cold air moves faster and pushes the warm air away, causing condensation and rain.