Explanation:
Hey, there!!
Single movable pulley has 2 VR because in single fixed pulley, load is supported with two segments of the string. It makes the effort distance double of the load distance. {As VR = No.of pulley used or number of rope segments that supports the load.}
<em><u>Hope</u></em><em><u> </u></em><em><u>it helps</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em>
Sound travels through waves, more specifically, through vibrations. They do not go from skull to ear, but they can go from ear to brain, or skull to brain. Ear to brain is simply vibrations traveling from outer ear, to inner ear, to the brain. Skull to brain, otherwise known as "bone conduction", has the vibrations hitting the skull, then to the temproal bone, then to the inner ear where the brain picks it up.
Answer:
2.85 rad/s
Explanation:
5 cm = 0.05 m
20 g = 0.02 kg
When dropping the 2nd object at a distance of 0.05 m from the center of mass, its corrected moments of inertia is:

So the total moment of inertia of the system of 2 objects after the drop is:

From here we can apply the law of angular momentum conservation to calculate the post angular speed

Answer:
<em>D. The total force on the particle with charge q is perpendicular to the bottom of the triangle.</em>
Explanation:
The image is shown below.
The force on the particle with charge q due to each charge Q = 
we designate this force as N
Since the charges form an equilateral triangle, then, the forces due to each particle with charge Q on the particle with charge q act at an angle of 60° below the horizontal x-axis.
Resolving the forces on the particle, we have
for the x-component
= N cosine 60° + (-N cosine 60°) = 0
for the y-component
= -f sine 60° + (-f sine 60) = -2N sine 60° = -2N(0.866) = -1.732N
The above indicates that there is no resultant force in the x-axis, since it is equal to zero (
= 0).
The total force is seen to act only in the y-axis, since it only has a y-component equivalent to 1.732 times the force due to each of the Q particles on q.
<em>The total force on the particle with charge q is therefore perpendicular to the bottom of the triangle.</em>