If im right the answer is wrong actually because no clue
Answer:
0.000000002 m=2.0*10⁻⁹ m
Explanation:
Scientific notation allows us to write very large or very small numbers in abbreviated form. This notation simply consists of multiplying by a power of base 10 with a positive or negative exponent.
A number written in scientific notation has the form:
a*10ⁿ
where:
- the coefficient a has a value such that 1 ≤ a <10
- n is an integer. Represents the number of times the decimal point is shifted. It is always a whole number, positive if it is shifted to the left, negative if it is shifted to the right.
So to write the number 0.000000002 in scientific notation, the following steps are performed:
- The decimal point is moved to the right as many spaces until it reaches the right of the first digit.
- This number is then written, which will be the coefficient a in the expression of the previous product. So a=2.0
- The base 10 is written with the exponent equal to the number of spaces that the comma moves. So n=9. But this is a negative number because the comma shifts to the right.
So, you get: <u><em>0.000000002 m=2.0*10⁻⁹ m</em></u>
Answers:
a) 10 m
b) time=1.6 s, frquency=0.625 Hz
c) 6.25 m/s
Explanation:
a) If there is a crest at each dock and another three crests between the two docks, and the wavelength
is the distance between to crests; this means we have
in
:

Clearing
:


b) This part can be solved by a Rule of Three:
If 10 waves ---- 16 s
1 wave ----- 
Then:

This is the period of the wave
On the other hand, the frequency
of the wave has an inverse relation with its period
:


This is the frequency of the wave
c) The speed
of a wave is given by the following equation:


Finally:

Answer: See explanation
Explanation:
The evolutionary stages for the formation of planets from earliest to latest will be:
1. Dust keeps matter inside the disk cool enough for planet formation to start
2. Dust grains form condensation nuclei on which surrounding atoms condense to form small clumps of matter.
3. Small clumps of matter stick together via the process of accretion to form planetesimals a few hundred kilometers in diameter.
4. Planetesimals begin to accrete, forming protoplanets.
5. A collection of a few planet-sized protoplanets remain in a fairly cleared out disk around the star