The Professor's centripetal acceleration is 0.044 m/s²
Centripetal acceleration is the acceleration of an object moving in circular motion. It is usually directed towards the center of the rotation.
It is given by:
a = v²/r
where v is the velocity and r is the radius.
Given that the radius (r) = 4 m, velocity (v) = 0.419 m/s, hence:
a = v²/r = 0.419²/4 = 0.044 m/s²
The Professor's centripetal acceleration is 0.044 m/s²
Find out more at: brainly.com/question/6082363
Answer:
Moment of Inertia, I = 0.016 kgm²
Explanation:
Mass of the ball, m = 0.20 kg
Length of the pitcher's arm, l = 0.28
Radius of the circular arc, r = 0.28 m
Moment of Inertia is given by the formula:
I = mr²
I = 0.20 * 0.28²
I = 0.20 * 0.0784
I = 0.01568
I = 0.016 kgm²
A positive or direct relationship is one in which the two variables (we will generally call them x and y) move together, that is, they either increase or decrease together. In a negative or indirect relationship, the two variables move in opposite directions, that is, as one increases, the other descremases
One of the concepts to be used to solve this problem is that of thermal efficiency, that is, that coefficient or dimensionless ratio calculated as the ratio of the energy produced and the energy supplied to the machine.
From the temperature the value is given as

Where,
T_L = Cold focus temperature
T_H = Hot spot temperature
Our values are given as,
T_L = 20\° C = (20+273) K = 293 K
T_H = 440\° C = (440+273) K = 713 K
Replacing we have,



Therefore the maximum possible efficiency the car can have is 58.9%