Answer:
The molecular formula = 
Explanation:
Given that:
Mass of compound, m = 0.145 g
Temperature = 200 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (200 + 273.15) K = 473.15 K
V = 97.2 mL = 0.0972 L
Pressure = 0.74 atm
Considering,
Using ideal gas equation as:
where,
P is the pressure
V is the volume
m is the mass of the gas
M is the molar mass of the gas
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the values in the above equation as:-
The empirical formula is =
Molecular formulas is the actual number of atoms of each element in the compound while empirical formulas is the simplest or reduced ratio of the elements in the compound.
Thus,
Molecular mass = n × Empirical mass
Where, n is any positive number from 1, 2, 3...
Mass from the Empirical formula = 12 + 1 = 13 g/mol
Molar mass = 78.31 g/mol
So,
Molecular mass = n × Empirical mass
78.31 = n × 13
⇒ n ≅ 6
The molecular formula = 
Answer:
Every 15 degrees is an hour
Explanation:
What is the time difference in mean solar time between 30° N 75° W and 30° N 90° W?
1.53 moles of Fe is your solution hope it helps!
C. quadruples the rate
<h3>Further explanation</h3>
Given
The rate law :
R=k[A]²
Required
The rate
Solution
There are several factors that influence reaction kinetics :
- 1. Concentration
- 2. Surface area
- 3. Temperature
- 4. Catalyst
- 5. Pressure
- 6. Stirring
The rate is proportional to the concentration.
If the concentration increased, the reaction rate will increase
The reaction is second-order overall(The exponent is 2)
The concentration of A is doubled, the reaction rate will increase :
r = k[A]² ⇒ r= k[2A]²⇒r=4k[A]²
<em>The reaction rate will quadruple.</em>
Answer: it is soluble
Explanation: nitrates are soluble.